1043 方格取数 2000 noip 提高组
1043 方格取数 2000 noip 提高组
题目描述 Description
设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):
某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入描述 Input Description
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出描述 Output Description
只需输出一个整数,表示2条路径上取得的最大的和。
样例输入 Sample Input
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
样例输出 Sample Output
67
数据范围及提示 Data Size & Hint
如描述
分类标签 Tags 点此展开
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int n,map[100][100],f[20][20][20][20]; int main(){ cin>>n; while(1){ int x,y,z; cin>>x>>y>>z; if(x==0&&y==0&&z==0) break; map[x][y]=z; } for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) for(int k=1;k<=n;k++) for(int l=1;l<=n;l++) if(l==j&&k==i) f[i][j][k][l]=map[i][j]+max(max(f[i-1][j][k-1][l],f[i][j-1][k][l-1]),max(f[i-1][j][k][l-1],f[i][j-1][k-1][l])); else f[i][j][k][l]=map[i][j]+map[k][l]+max(max(f[i-1][j][k-1][l],f[i][j-1][k][l-1]),max(f[i-1][j][k][l-1],f[i][j-1][k-1][l])); cout<<f[n][n][n][n]; return 0; }
DP
因为是取两次,所以有的同学会想到先取一遍最大值,把取过的附值为0,然后再取一遍。但这时怎样标记那个点取过是非常困难的,所以我们自然而然的想到可以设一个4维DP f[i][j][k][l] ,i代表第一次取值的横坐标,j代表第一次取值的纵坐标,k代表第二次取值的横坐标,l代表第二次取值的纵坐标,然后一个4重循环,列出动态转移方程。分成两种情况:两次取到公共点,两次所取的值不相同。
公共点:f[i][j][k][l]=a[i][j]+max(max(f[i][j-1][k-1][l],f[i-1][j][k][l-1]),max(f[i][j-1][k][l-1],f[i-1][j][k-1][l]))//因为存在公共点,所以该点只取一次。总共四种情况,不重不漏。
不同点:
f[i][j][k][l]=a[i][j]+a[k][l]+max(max(f[i][j-1][k-1][l],f[i-1][j][k][l-1]),max(f[i][j-1][k][l-1],f[i-1][j][k-1][l]))//同理;