bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数
题意:给出一个NN的矩阵B和一个1N的矩阵C。求出一个1*N的01矩阵A.使得
\(D=(A * B-C)* A^T\)最大。其中A^T为A的转置。输出D。每个数非负。
分析一下这个乘法的性质或者化简一下容易发现,\(C_i\)代价生效需要\(A_i=1\),\(B_{ij}\)贡献生效需要\(A_i =A_j=1\)
最小割
我成功的把dinic里的括号打错了...gg
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=300005, M=2e6+5, INF = 1e9;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, b[505][505], c[505], sum;
struct edge{int v, ne, c, f;} e[M];
int cnt=1, h[N], s, t;
inline void ins(int u, int v, int c) {
e[++cnt] = (edge){v, h[u], c, 0}; h[u] = cnt;
e[++cnt] = (edge){u, h[v], 0, 0}; h[v] = cnt;
}
namespace mf {
int q[N], head, tail, vis[N], d[N];
bool bfs() {
memset(vis, 0, sizeof(vis));
head = tail = 1;
q[tail++] = s; d[s] = 0; vis[s] = 1;
while(head != tail) {
int u = q[head++];
for(int i=h[u];i;i=e[i].ne)
if(!vis[e[i].v] && e[i].c > e[i].f) {
int v = e[i].v;
vis[v] = 1; d[v] = d[u]+1;
q[tail++] = v;
if(v == t) return true;
}
}
return false;
}
int cur[N];
int dfs(int u, int a) {
if(u == t || a == 0) return a;
int flow = 0, f;
for(int &i=cur[u];i;i=e[i].ne)
if(d[e[i].v] == d[u]+1 && (f = dfs(e[i].v, min(a, e[i].c - e[i].f)) ) >0 ) {
flow += f;
e[i].f += f;
e[i^1].f -= f;
a -= f;
if(a == 0) break;
}
if(a) d[u] = -1;
return flow;
}
int dinic() {
int flow = 0;
while(bfs()) {
for(int i=s; i<=t; i++) cur[i] = h[i];
flow += dfs(s, INF);
}
return flow;
}
}
void build() {
s = 0; t = n + n*n + 1;
for(int i=1; i<=n; i++) ins(s, i, c[i]), ins(i, t, b[i][i]);
for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) if(i != j) {
int id = i*n+j;
ins(i, id, INF); ins(j, id, INF); ins(id, t, b[i][j]);
}
}
int main() {
freopen("in", "r", stdin);
n = read();
for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) b[i][j] = read(), sum += b[i][j];
for(int i=1; i<=n; i++) c[i] = read();
build();
int ans = mf::dinic();
printf("%d\n", sum - ans);
}
Copyright:http://www.cnblogs.com/candy99/