bzoj 3509: [CodeChef] COUNTARI] [分块 生成函数]
3509: [CodeChef] COUNTARI
题意:统计满足\(i<j<k, 2*a[j] = a[i] + a[k]\)的个数
\(2*a[j]\)不太好处理,暴力fft不如直接暴力
考虑分块
每个块用生成函数统计j在块中ik在两边的块中的
有两个在块中或者三个都在暴力统计,实时维护两边权值出现次数
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <ctime>
using namespace std;
typedef long long ll;
const int N = (1<<16) + 5, M = 1e5+5;
const double PI = acos(-1.0);
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
}
struct meow{
double x, y;
meow(double a=0, double b=0):x(a), y(b){}
};
meow operator +(meow a, meow b) {return meow(a.x+b.x, a.y+b.y);}
meow operator -(meow a, meow b) {return meow(a.x-b.x, a.y-b.y);}
meow operator *(meow a, meow b) {return meow(a.x*b.x-a.y*b.y, a.x*b.y+a.y*b.x);}
meow conj(meow a) {return meow(a.x, -a.y);}
typedef meow cd;
namespace fft {
int n, rev[N];
cd omega[N], omegaInv[N];
void init(int lim) {
n = 1; while(n < lim) n <<= 1;
for(int i=0; i<n; i++) {
omega[i] = cd(cos(2*PI/n*i), sin(2*PI/n*i));
omegaInv[i] = conj(omega[i]);
}
}
void dft(cd *a, int n, int flag) {
cd *w = flag == 1 ? omega : omegaInv;
int k = 0; while((1<<k) < n) k++;
for(int i=0; i<n; i++) {
rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
if(i < rev[i]) swap(a[i], a[rev[i]]);
}
for(int l=2; l<=n; l<<=1) {
int m = l>>1;
for(cd *p = a; p != a+n; p += l)
for(int k=0; k<m; k++) {
cd t = w[n/l*k] * p[k+m];
p[k+m] = p[k] - t;
p[k] = p[k] + t;
}
}
if(flag == -1) for(int i=0; i<n; i++) a[i].x /= n;
}
void mul(cd *a, cd *b) {
dft(a, n, 1); dft(b, n, 1);
for(int i=0; i<n; i++) a[i] = a[i] * b[i];
dft(a, n, -1);
}
}
int n, a[M], c1[N], c2[N], block, m;
cd p[N], q[N];
ll ans;
int main() {
freopen("in", "r", stdin);
n=read();
block = min(n, 8 * (int) sqrt(n));
for(int i=1; i<=n; i++) a[i] = read(), c2[a[i]]++, m = max(m, a[i]);
fft::init(m+m+1);
for(int l=1; l<=n; l+=block) {
int r = min(n, l+block-1);
for(int i=l; i<=r; i++) c2[a[i]]--;
for(int i=l; i<=r; i++) {
for(int j=i+1; j<=r; j++) {
int t = (a[j]<<1) - a[i];
if(t >= 0) ans += c2[t];
t = (a[i]<<1) - a[j];
if(t >= 0) ans += c1[t];
}
c1[a[i]]++;
}
//printf("hi [%d, %d] %lld\n", l, r, ans);
}
for(int l=1; l<=n; l+=block) { //printf("l %d\n", l);
int r = min(n, l+block-1);
memset(p, 0, sizeof(p)); memset(q, 0, sizeof(q));
for(int i=1; i<l; i++) p[a[i]].x ++;
for(int i=r+1; i<=n; i++) q[a[i]].x ++;
fft::mul(p, q);
for(int i=l; i<=r; i++) ans += (ll) floor(p[a[i]<<1].x + 0.5);
}
printf("%lld", ans);
//printf("\n%lf", (double) clock() / CLOCKS_PER_SEC);
}
Copyright:http://www.cnblogs.com/candy99/