BZOJ 3990: [SDOI2015]排序 [搜索]
3990: [SDOI2015]排序
题意:\(2^n\)的一个排列,给你n种操作,第i种把每\(2^{i-1}\)个数看成一段,交换任意两段。问是这个序列有序的操作方案数,两个操作序列不同,当且仅当操作个数不同,或者至少一个操作不同(种类不同或者操作位置不同).
R1D1T1
先玩一下样例
发现操作的顺序其实没有影响
从小到大考虑,设当前处理的有n段,可以分成\(\frac{n}{2}\)个二元组\((a_i, a_{i+1})\),每个都要满足\(a_i +1 = a_{i+1}\),找出有几个不满足,如果\(\le 2\)个那么枚举如何交换然后再处理\(\frac{n}{2}\)段的时候
注意每种成立的交换就要继续搜索...一开始没这么做然后35分...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=(1<<12) + 5, INF=1e9+5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int bin, n, t[15][N], fac[N]; ll ans=0;
inline bool check(int *a, int x, int y) {return a[x]+1 == a[x+1] && a[y]+1 == a[y+1];}
inline void ready(int *a, int n) {
for(int i=1; i<=n; i++) a[i] = a[i*2-1]/2 + 1;
}
void dfs(int d, int n, int now) { //printf("dfs %d %d %d\n",d,n,now);
if(d>=bin) {ans += fac[now]; return;}
int *a = t[d], *b = t[d+1];
//for(int i=1; i<=n; i++) printf("%d ",a[i]); puts(" a");
int tot=0, li[5];
for(int i=1; i<=n; i+=2)
if(a[i]+1 != a[i+1]) {li[++tot]=i; if(tot>2) return;}
int x=li[1], y=li[2];
if(tot==2) {
swap(a[x], a[y]);
if(check(a, x, y)) memcpy(b, a, sizeof(int)*(n+1)), ready(b, n>>1), dfs(d+1, n>>1, now+1);
swap(a[x], a[y]);
swap(a[x], a[y+1]);
if(check(a, x, y)) memcpy(b, a, sizeof(int)*(n+1)), ready(b, n>>1), dfs(d+1, n>>1, now+1);
swap(a[x], a[y+1]);
swap(a[x+1], a[y]);
if(check(a, x, y)) memcpy(b, a, sizeof(int)*(n+1)), ready(b, n>>1), dfs(d+1, n>>1, now+1);
swap(a[x+1], a[y]);
swap(a[x+1], a[y+1]);
if(check(a, x, y)) memcpy(b, a, sizeof(int)*(n+1)), ready(b, n>>1), dfs(d+1, n>>1, now+1);
swap(a[x+1], a[y+1]);
} else if(tot==0) memcpy(b, a, sizeof(int)*(n+1)), ready(b, n>>1), dfs(d+1, n>>1, now);
else if(tot==1) swap(a[x], a[x+1]), memcpy(b, a, sizeof(int)*(n+1)), ready(b, n>>1), dfs(d+1, n>>1, now+1);
}
int main() {
freopen("in","r",stdin);
bin=read(); n=1<<bin;
fac[0]=1;
for(int i=1; i<=bin; i++) fac[i]=fac[i-1]*i;
for(int i=1; i<=n; i++) t[0][i]=read();
dfs(0, n, 0);
printf("%lld", ans);
}
Copyright:http://www.cnblogs.com/candy99/