BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

4518: [Sdoi2016]征途

题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\)


DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[i]-s[k])^2 \}\)
发现可以斜率优化,很久没写忘记了60分暴力走人


拆开平方,\(f[i][p]=-2s_i s_k + f[k][p-1] + s_k^2 - s_i^2\)
对于两个转移\(j,k\),j比k优时$$
slope(j,k)=\frac{f[j]+s_j2-f[k]-s_k2}{s_j-s_k} \ge 2s_i

\[纵坐标$A(i)=f[i]+s_i^2$,横坐标$s_i$,发现横坐标和斜率都递增,维护下凸壳就行了 </br> MD这破玩意我还写错 ```cpp #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <cmath> using namespace std; typedef long long ll; #define fir first #define sec second const int N=3005, INF=1e9; inline int read() { char c=getchar(); int x=0, f=1; while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();} while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();} return x*f; } int n, m, a[N]; ll f[N][N], s[N]; inline double A(int i, int p) {return (double)f[i][p] + s[i]*s[i];} inline double slope(int j, int k, int p) { return (double)(A(j, p) - A(k, p))/(double)(s[j]-s[k]); } int q[N], head, tail; void dp() { f[0][0]=0; for(int i=1; i<=n; i++) f[i][1]=s[i]*s[i]; for(int p=2; p<=m; p++) { head=1; tail=0; for(int i=1; i<=n; i++) { while(head<tail && slope(q[head], q[head+1], p-1) < 2*s[i]) head++; int j=q[head]; f[i][p] = f[j][p-1] + (s[j]-s[i])*(s[j]-s[i]); while(head<tail && slope(q[tail], q[tail-1], p-1) > slope(q[tail], i, p-1)) tail--; q[++tail]=i; } } ll ans = m*f[n][m] - s[n]*s[n]; printf("%lld\n",ans); } int main() { //freopen("in","r",stdin); freopen("menci_journey.in","r",stdin); freopen("menci_journey.out","w",stdout); n=read(); m=read(); for(int i=1; i<=n; i++) a[i]=read(), s[i]=s[i-1]+a[i];// printf("i %d\n",i);; dp(); } ```\]

posted @ 2017-03-31 18:19  Candy?  阅读(538)  评论(0编辑  收藏  举报