NOIP2003pj栈[卡特兰数]

题目背景

栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。

栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈)。

栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙。

题目描述

宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n。

现在可以进行两种操作,

1.将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的push操作)

  1. 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的pop操作)

使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由1 2 3生成序列2 3 1的过程。

(原始状态如上图所示)

你的程序将对给定的n,计算并输出由操作数序列1,2,…,n经过操作可能得到的输出序列的总数。

输入输出格式

输入格式:

 

输入文件只含一个整数n(1≤n≤18)

 

输出格式:

 

输出文件只有一行,即可能输出序列的总数目

 

输入输出样例

输入样例#1:
3
输出样例#1:
5

按最后一个数分类,卡特兰数
一些知识:
令h(0)=1,h(1)=1,catalan数满足递推式
h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)*h(0) (n>=2)
h(n)=h(n-1)*(4*n-2)/(n+1);
#include <cstdio>
int main(){
    long long n,f=1;
    scanf("%lld",&n);
    for(int i=1;i<=n;i++) f=f*(4*i-2)/(i+1);
    printf("%lld",f); 
}

 



posted @ 2016-11-16 19:47  Candy?  阅读(502)  评论(0编辑  收藏  举报