poj 2229 Sumsets
http://poj.org/problem?id=2229
题意:把一个整数拆分为2的幂。
当n为奇数时dp[n]=dp[n-1];因为每总都加1,所以总数一样。当n为偶数时,分为有1和无1,有1.拆一个1,就变成奇数了,无1,就等于dp[n/2];
Sumsets
Time Limit: 2000MS | Memory Limit: 200000K | |
Total Submissions: 14180 | Accepted: 5637 |
Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
Source
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int m=1000000000; int dp[1000000]; int main() { int n; while(~scanf("%d",&n)) { memset(dp,0,sizeof(dp)); int i; dp[1]=1; dp[2]=2; for(i=3;i<=n;i++) { if(i%2==0) { dp[i]=dp[i/2]+dp[i-2]; dp[i]%=m; } else { dp[i]=dp[i-1]; dp[i]%=m; } } printf("%d\n",dp[n]%m); } return 0; }
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int m=1000000000; int dp[1000000]; int main() { int n; while(~scanf("%d",&n)) { memset(dp,0,sizeof(dp)); int i; dp[1]=1; dp[2]=2; for(i=3;i<=n;i++) { if(i%2==0) { dp[i]=dp[i/2]+dp[i-2]; dp[i]%=m; } else { dp[i]=dp[i-1]; dp[i]%=m; } } printf("%d\n",dp[n]%m); } return 0; }