HDU-1028 Ignatius and the Princess III
整数拆分题目:
http://acm.hdu.edu.cn/showproblem.php?pid=1028
Ignatius and the Princess III
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 10429 Accepted Submission(s): 7398
"The second problem is, given an positive integer N, we define an equation like this: N=a[1]+a[2]+a[3]+...+a[m]; a[i]>0,1<=m<=N; My question is how many different equations you can find for a given N. For example, assume N is 4, we can find: 4 = 4; 4 = 3 + 1; 4 = 2 + 2; 4 = 2 + 1 + 1; 4 = 1 + 1 + 1 + 1; so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
int split(int n, int m) { if(n < 1 || m < 1) return 0; if(n == 1 || m == 1) return 1; if(n < m) return split(n, n); if(n == m) return (split(n, m - 1) + 1); if(n > m) return (split(n, m - 1) + split((n - m), m)); }
递归算法易于理解。但是由于多次重复计算,会很浪费时间。所以需要转化成非递归的算法。如下:
首先,我们引进一个小小概念来方便描述吧,record[n][m]是把自然数划划分成所有元素不大于m的分法,例如:
当n=4,m=1时,要求所有的元素都比m小,所以划分法只有1种:{1,1,1,1};
当n=4,m=2时,。。。。。。。。。。。。。。。。只有3种{1,1,1,1},{2,1,1},{2,2};
当n=4,m=3时,。。。。。。。。。。。。。。。。只有4种{1,1,1,1},{2,1,1},{2,2},{3,1};
当n=4,m=5时,。。。。。。。。。。。。。。。。只有5种{1,1,1,1},{2,1,1},{2,2},{3,1},{4};
从上面我们可以发现:当n==1||m==1时,只有一种分法;
当n<m时,由于分法不可能出现负数,所以record[n][m]=record[n][n];
当n==m时,那么就得分析是否要分出m这一个数,如果要分那就只有一种{m},要是不分,那就是把n分成不大于m-1的若干份;即record[n][n]=1+record[n][n-1];
当n>m时,那么就得分析是否要分出m这一个数,如果要分那就{{m},{x1,x2,x3..}}时n-m的分法record[n-m][m],要是不分,那就是把n分成不大于m-1的若干份;即record[n][n]=record[n-m][m]+record[n][m-1];
#include<stdio.h> int dp[150][150]={0}; int main() { int i,j; for(i=1;i<=121;i++) dp[1][i]=dp[i][1]=1; for(i=2;i<121;i++) { for(j=2;j<=121;j++) { if(i<j) dp[i][j]=dp[i][i]; else if(i==j) dp[i][j]=1+dp[i][j-1]; else if(i>j) dp[i][j]=dp[i-j][j]+dp[i][j-1]; } } int n; while(~scanf("%d",&n)) printf("%d\n",dp[n][n]); return 0; }
利用母函数,但是,比较费时。
#include <stdio.h> const int lmax=10000; int c1[lmax+1],c2[lmax+1]; int main() { int n,i,j,k; while (~scanf("%d",&n)) { for (i=0;i<=n;i++) { c1[i]=0; c2[i]=0; } for(i=0;i<=n;i++) c1[i]=1; for(i=2;i<=n;i++) { for(j=0;j<=n;j++) for(k=0;k+j<=n;k+=i) { c2[j+k]+=c1[j]; } for (j=0;j<=n;j++) { c1[j]=c2[j]; c2[j]=0; } } printf("%d\n",c1[n]); } return 0; }