QAnet Encoder
#!/usr/bin/python3
# -*- coding: utf-8 -*-
'''
date: 2019/8/19
mail: cally.maxiong@gmail.com
blog: http://www.cnblogs.com/callyblog/
'''
import math
import tensorflow as tf
__all__ = ['encoder']
initializer_relu = lambda: tf.contrib.layers.variance_scaling_initializer(factor=2.0,
mode='FAN_IN',
uniform=False,
dtype=tf.float32)
regularizer = tf.contrib.layers.l2_regularizer(scale=3e-7)
def encoder(inputs, num_blocks, num_conv_layers, kernel_size, inputs_mask, num_filters=128, input_projection=False,
num_heads=8, is_training=False, reuse=None, dropout=0.0, scope="res_block"):
"""
QAnet encoder
:param inputs: inputs
:param num_blocks: number of conv and self attention block
:param num_conv_layers: number of layers of each conv block
:param kernel_size: kernel size
:param inputs_mask: input mask
:param num_filters: number of conv filters
:param input_projection: whether add linear before through conv and self attention block
:param num_heads: self attention number of heads
:param is_training: whether training
:param reuse: whether reuse variable
:param dropout: dropout rate
:param scope: scope name
"""
with tf.variable_scope(scope, reuse=reuse):
if input_projection:
inputs = tf.layers.conv1d(inputs, filters=num_filters, kernel_size=1, use_bias=False, reuse=reuse, name='input_projection')
outputs = inputs
for i in range(num_blocks):
outputs = _add_timing_signal_1d(outputs)
outputs = _conv_block(outputs, num_conv_layers, kernel_size, num_filters, reuse=reuse, is_training=is_training,
dropout=dropout, scope="conv_block%d" % i)
outputs = _multihead_attention(outputs, inputs_mask, dropout_rate=dropout, num_heads=num_heads,
training=is_training, reuse=reuse, scope="self_attention_layers%d" % i)
return outputs
def _add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
"""Adds a bunch of sinusoids of different frequencies to a Tensor.
Each channel of the input Tensor is incremented by a sinusoid of a different
frequency and phase.
This allows attention to learn to use absolute and relative positions.
Timing signals should be added to some precursors of both the query and the
memory inputs to attention.
The use of relative position is possible because sin(x+y) and cos(x+y) can be
experessed in terms of y, sin(x) and cos(x).
In particular, we use a geometric sequence of timescales starting with
min_timescale and ending with max_timescale. The number of different
timescales is equal to channels / 2. For each timescale, we
generate the two sinusoidal signals sin(timestep/timescale) and
cos(timestep/timescale). All of these sinusoids are concatenated in
the channels dimension.
Args:
x: a Tensor with shape [batch, length, channels]
min_timescale: a float
max_timescale: a float
Returns:
a Tensor the same shape as x.
"""
length = tf.shape(x)[1]
channels = tf.shape(x)[2]
signal = _get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return x + signal
def _get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
"""Gets a bunch of sinusoids of different frequencies.
Each channel of the input Tensor is incremented by a sinusoid of a different
frequency and phase.
This allows attention to learn to use absolute and relative positions.
Timing signals should be added to some precursors of both the query and the
memory inputs to attention.
The use of relative position is possible because sin(x+y) and cos(x+y) can be
experessed in terms of y, sin(x) and cos(x).
In particular, we use a geometric sequence of timescales starting with
min_timescale and ending with max_timescale. The number of different
timescales is equal to channels / 2. For each timescale, we
generate the two sinusoidal signals sin(timestep/timescale) and
cos(timestep/timescale). All of these sinusoids are concatenated in
the channels dimension.
Args:
length: scalar, length of timing signal sequence.
channels: scalar, size of timing embeddings to create. The number of
different timescales is equal to channels / 2.
min_timescale: a float
max_timescale: a float
Returns:
a Tensor of timing signals [1, length, channels]
"""
position = tf.to_float(tf.range(length))
num_timescales = channels // 2
log_timescale_increment = (
math.log(float(max_timescale) / float(min_timescale)) /
(tf.to_float(num_timescales) - 1))
inv_timescales = min_timescale * tf.exp(
tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0)
signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
signal = tf.pad(signal, [[0, 0], [0, tf.mod(channels, 2)]])
signal = tf.reshape(signal, [1, length, channels])
return signal
def _conv_block(inputs, num_conv_layers, kernel_size, num_filters, scope="conv_block", is_training=False, reuse=None,
dropout=0.0):
"""
conv block, contain depth wise separable convolution and conv block
:param inputs: inputs
:param num_conv_layers: number of conv layers
:param kernel_size: conv kernel size
:param num_filters: number of conv filters
:param scope: scope name
:param is_training: whether training
:param reuse: whether reuse variable
:param dropout: dropout rate
"""
with tf.variable_scope(scope, reuse=reuse):
outputs = tf.expand_dims(inputs, 2)
for i in range(num_conv_layers):
residual = outputs
outputs = _ln(outputs, scope="layer_norm_%d" % i, reuse=reuse)
if i % 2 == 0 and is_training:
outputs = tf.layers.dropout(outputs, dropout, training=is_training)
outputs = _depthwise_separable_convolution(outputs, kernel_size=(kernel_size, 1), num_filters=num_filters,
scope="depthwise_conv_layers_%d" % i, reuse=reuse)
outputs = tf.layers.dropout(outputs, dropout, training=is_training)
outputs = outputs + residual
return tf.squeeze(outputs, 2)
def _depthwise_separable_convolution(inputs, kernel_size, num_filters, bias=True, reuse=None,
scope="depthwise_separable_convolution"):
"""
depth wise separable convolution
:param inputs: input
:param kernel_size: kernel size
:param num_filters: number of filter
:param bias: whether use bias
:param reuse: whether reuse variable
:param scope: scope name
"""
with tf.variable_scope(scope, reuse=reuse):
shapes = inputs.shape.as_list()
depthwise_filter = tf.get_variable("depthwise_filter",
(kernel_size[0], kernel_size[1], shapes[-1], 1),
dtype=tf.float32,
regularizer=regularizer,
initializer=initializer_relu())
pointwise_filter = tf.get_variable("pointwise_filter",
(1, 1, shapes[-1], num_filters),
dtype=tf.float32,
regularizer=regularizer,
initializer=initializer_relu())
outputs = tf.nn.separable_conv2d(inputs,
depthwise_filter,
pointwise_filter,
strides=(1, 1, 1, 1),
padding="SAME")
if bias:
b = tf.get_variable("bias",
outputs.shape[-1],
regularizer=regularizer,
initializer=tf.zeros_initializer())
outputs += b
outputs = tf.nn.relu(outputs)
return outputs
def _multihead_attention(inputs,
input_mask,
num_heads=8,
dropout_rate=0.0,
training=False,
reuse=None,
scope="multihead_attention"):
'''Applies multihead attention. See 3.2.2
inputs: A 3d tensor with shape of [N, T, d_model].
input_mask: A 3d tensor with shape of [N, T].
num_heads: An int. Number of heads.
dropout_rate: A floating point number.
training: Boolean. Controller of mechanism for dropout.
causality: Boolean. If true, units that reference the future are masked.
scope: Optional scope for `variable_scope`.
Returns
A 3d tensor with shape of (N, T_q, C)
'''
with tf.variable_scope(scope, reuse=reuse):
inputs = inputs * tf.cast(tf.expand_dims(input_mask, axis=-1), dtype=tf.float32)
inputs = _ln(inputs, reuse=reuse, scope=scope+'_layer_normal')
queries = inputs
keys = inputs
values = inputs
d_model = queries.get_shape().as_list()[-1]
# Linear projections
Q = tf.layers.dense(queries, d_model, use_bias=False, reuse=reuse) # (N, T_q, d_model)
K = tf.layers.dense(keys, d_model, use_bias=False, reuse=reuse) # (N, T_k, d_model)
V = tf.layers.dense(values, d_model, use_bias=False, reuse=reuse) # (N, T_k, d_model)
# Split and concat
Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0) # (h*N, T_q, d_model/h)
K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h)
V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0) # (h*N, T_k, d_model/h)
# Attention
outputs = _scaled_dot_product_attention(Q_, K_, V_, dropout_rate, training, reuse=reuse)
# Restore shape
outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2) # (N, T_q, d_model)
# feed forward
outputs = tf.layers.conv1d(outputs, filters=d_model, kernel_size=1, reuse=reuse, trainable=training)
outputs = tf.layers.dropout(outputs, dropout_rate, training=training)
# Residual connection
outputs = queries + outputs
# Normalize
outputs = _ln(outputs, reuse=reuse, scope='feed_forword_layer_normal')
return outputs
def _scaled_dot_product_attention(Q, K, V,
dropout_rate=0.,
training=False,
reuse=None,
scope="scaled_dot_product_attention"):
'''See 3.2.1.
Q: Packed queries. 3d tensor. [N, T_q, d_k].
K: Packed keys. 3d tensor. [N, T_k, d_k].
V: Packed values. 3d tensor. [N, T_k, d_v].
causality: If True, applies masking for future blinding
dropout_rate: A floating point number of [0, 1].
training: boolean for controlling droput
scope: Optional scope for `variable_scope`.
'''
with tf.variable_scope(scope, reuse=reuse):
d_k = Q.get_shape().as_list()[-1]
# dot product
outputs = tf.matmul(Q, tf.transpose(K, [0, 2, 1])) # (N, T_q, T_k)
# scale
outputs /= d_k ** 0.5
# key masking, delete key 0
outputs = _mask(outputs, Q, K, type="key")
# softmax
outputs = tf.nn.softmax(outputs)
attention = tf.transpose(outputs, [0, 2, 1])
tf.summary.image("attention", tf.expand_dims(attention[:1], -1))
# query masking, delete query <pad>
outputs = _mask(outputs, Q, K, type="query")
# dropout
outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=training)
# weighted sum (context vectors)
outputs = tf.matmul(outputs, V) # (N, T_q, d_v)
return outputs
def _mask(inputs, queries=None, keys=None, type=None):
"""Masks paddings on keys or queries to inputs
inputs: 3d tensor. (N, T_q, T_k)
queries: 3d tensor. (N, T_q, d)
keys: 3d tensor. (N, T_k, d)
e.g.,
>> queries = tf.constant([[[1.],
[2.],
[0.]]], tf.float32) # (1, 3, 1)
>> keys = tf.constant([[[4.],
[0.]]], tf.float32) # (1, 2, 1)
>> inputs = tf.constant([[[4., 0.],
[8., 0.],
[0., 0.]]], tf.float32)
>> mask(inputs, queries, keys, "key")
array([[[ 4.0000000e+00, -4.2949673e+09],
[ 8.0000000e+00, -4.2949673e+09],
[ 0.0000000e+00, -4.2949673e+09]]], dtype=float32)
>> inputs = tf.constant([[[1., 0.],
[1., 0.],
[1., 0.]]], tf.float32)
>> mask(inputs, queries, keys, "query")
array([[[1., 0.],
[1., 0.],
[0., 0.]]], dtype=float32)
"""
outputs = None
padding_num = -2 ** 32 + 1
if type in ("k", "key", "keys"):
# Generate masks
masks = tf.sign(tf.reduce_sum(tf.abs(keys), axis=-1)) # (N, T_k)
masks = tf.expand_dims(masks, 1) # (N, 1, T_k)
masks = tf.tile(masks, [1, tf.shape(queries)[1], 1]) # (N, T_q, T_k)
# Apply masks to inputs
paddings = tf.ones_like(inputs) * padding_num
outputs = tf.where(tf.equal(masks, 0), paddings, inputs) # (N, T_q, T_k)
elif type in ("q", "query", "queries"):
# Generate masks
masks = tf.sign(tf.reduce_sum(tf.abs(queries), axis=-1)) # (N, T_q)
masks = tf.expand_dims(masks, -1) # (N, T_q, 1)
masks = tf.tile(masks, [1, 1, tf.shape(keys)[1]]) # (N, T_q, T_k)
# Apply masks to inputs
outputs = inputs*masks
else:
print("Check if you entered type correctly!")
return outputs
def _ln(inputs, epsilon=1e-6, reuse=None, scope="ln"):
'''Applies layer normalization. See https://arxiv.org/abs/1607.06450.
inputs: A tensor with 2 or more dimensions, where the first dimension has `batch_size`.
epsilon: A floating number. A very small number for preventing ZeroDivision Error.
scope: Optional scope for `variable_scope`.
Returns:
A tensor with the same shape and data dtype as `inputs`.
'''
with tf.variable_scope(scope, reuse=reuse):
inputs_shape = inputs.get_shape()
params_shape = inputs_shape[-1:]
mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)
beta = tf.get_variable("beta", params_shape, initializer=tf.zeros_initializer())
gamma = tf.get_variable("gamma", params_shape, initializer=tf.ones_initializer())
normalized = (inputs - mean) / ((variance + epsilon) ** (.5))
outputs = gamma * normalized + beta
return outputs
在QAnet最后的三个encoder中,各项参数为,其中hidden size为context_query输出的hidden size
encoder(enc[i], num_blocks=7, num_conv_layers=2, kernel_size=5, inputs_mask=input_mask, num_filters=hidden_size, num_heads=8, scope='Model_Encoder', reuse=True if i > 0 else None, is_training=False, dropout=0.1)