单例模式的实现方式及如何有效防止防止反射和反序列化

方式一:饿汉式(静态常量)

 

public class Singleton {
    
    private final static Singleton SINGLETON = new Singleton();
    
    private Singleton(){
    }
    
    public void doAction(){
        //TODO 实现你需要做的事
    }
    
    public static Singleton getInstance(){
        return SINGLETON;
    }
}

 

测试用例:

public class Test {
    public static void main(String[] args) {
        Signleton singleton1 = Singleton.getInstance();
        Signleton singleton2 = Singleton.getInstance();
        
        System.out.println("两个singleton对象是否是同一个对象:"+ (singleton1 == singleton2) );
        System.out.println("singleton1的hashCode:"+singleton1.hashCode());
        System.out.println("singleton2的hashCode:"+singleton2.hashCode());
    }
}

运行结果:

两个singleton对象是否是同一个对象:true
singleton1的hashCode:366712642
singleton2的hashCode:366712642

优点:

  1. 代码实现简单
  2. 利用类加载机制避免了多线程同步问题

缺点:

  1. 在类加载时就完成了实例化,没有达到Lazy loading的效果,有可能造成内存浪费

 


方式二:饿汉式(静态代码块)

public class Singleton {
    
    private final static Singleton SINGLETON;
    static{
        SINGLETON = new Singleton();
    }
    
    private Singleton(){
    }
    public void doAction(){
        //TODO 实现你需要做的事
    }
    
    public static Singleton getInstance(){
        return SINGLETON;
    }
}

 

测试用例:

public class Test {
    public static void main(String[] args) {
        Signleton singleton1 = Singleton.getInstance();
        Signleton singleton2 = Singleton.getInstance();
        
        System.out.println("两个singleton对象是否是同一个对象:"+ (singleton1 == singleton2) );
        System.out.println("singleton1的hashCode:"+singleton1.hashCode());
        System.out.println("singleton2的hashCode:"+singleton2.hashCode());
    }
}

运行结果:

两个singleton对象是否是同一个对象:true
singleton1的hashCode:366712642
singleton2的hashCode:366712642

这种实现方式优缺点和方式一是一样的,也是利用了类加载,唯一不同的就是将实例化的过程放在了静态代码块中。


 

方式三:懒汉式(线程不安全)

public class Singleton {

    private static Singleton singleton;
    private Singleton(){
    }
    public void doAction(){
        //TODO 实现你需要做的事
    }
    
    public static Singleton getInstance(){
        if (singleton == null) {
            singleton = new Singleton();
        }
        return singleton;
    }
}

测试代码:

public class Test {
    public static void main(String[] args) {
        //多线程获取对象,存在线程不安全问题
        Thread thread1 = new Thread(new Runnable() {
            public void run() {
                Singleton singleton1 = Singleton.getInstance();
                System.out.println("singleton1的hashCode:"+singleton1.hashCode());
            }
        });
        Thread thread2 = new Thread(new Runnable() {
            public void run() {
                Singleton singleton2 = Singleton.getInstance();
                System.out.println("singleton2的hashCode:"+singleton2.hashCode());
            }
        });
        thread1.start();
        thread2.start();
    }
}

运行结果:

第一次运行结果:
    singleton2的hashCode:1813990537
    singleton1的hashCode:1813990537
第二次运行结果:
    singleton1的hashCode:1813990537
    singleton2的hashCode:1481479505

从两次运行结果来看,我们发现singleton1与singleton2的hashCode存在相同和不想同的两种情况,这就已经证明了这种方式的线程不安全性

优点:

  1. 起到了Lazy loading效果,适合在单线程环境中使用

缺点:

  1. 在多线程环境中存在线程不安全问题

 

 方式四:懒汉式(方法同步)

public class Singleton {
    private static Singleton singleton;

    private Singleton(){
    }
    public void doAction(){
        //TODO 实现你需要做的事
    }
    public synchronized static Singleton getInstance(){
        if (singleton == null) {
            singleton = new Singleton();
        }
        return singleton;
    }
}

测试用例(可多做几次测试):

public class Test {
    public static void main(String[] args) {
        //多线程获取对象,线程安全问题
        Thread thread1 = new Thread(new Runnable() {
            public void run() {
                Singleton singleton1 = Singleton.getInstance();
                System.out.println("singleton1的hashCode:"+singleton1.hashCode());
            }
        });
        Thread thread2 = new Thread(new Runnable() {
            public void run() {
                Singleton singleton2 = Singleton.getInstance();
                System.out.println("singleton2的hashCode:"+singleton2.hashCode());
            }
        });
        thread1.start();
        thread2.start();
    }
}

运行结果:

第一次运行结果:
    singleton1的hashCode:1947425526
    singleton2的hashCode:1947425526
第二次运行结果:
    singleton1的hashCode:1430007319
    singleton2的hashCode:1430007319

从两次运行结果来看,我们发现singleton1与singleton2的hashCode是一样的,说明这种方法是线程安全的

优点:

  1. 实现了Lazy loading想过
  2. 避免了多线程同步问题

缺点:

  1. 效率太低,每个线程在执行getInstance()方法都要进行同步。实际上这个方法只要执行一次实例化就行,当实例化完成,后面的线程是通不过if判断的

 

方式五:懒汉式(实例化代码同步)

 

public class Singleton {
    private static Singleton singleton;
    
    public Singleton() {
    }
    public void doAction(){
        //TODO 实现你需要做的事
    }
    public  static Singleton getInstance(){
        if (singleton == null) {
            synchronized (Singleton.class) {
                singleton = new Singleton();
            }
        }
        return singleton;
    }
}

 

测试用例:

public class Test {
    public static void main(String[] args) {
        //多线程获取对象,存在线程不安全问题
        Thread thread1 = new Thread(new Runnable() {
            public void run() {
                Singleton singleton1 = Singleton.getInstance();
                System.out.println("singleton1的hashCode:"+singleton1.hashCode());
            }
        });
        Thread thread2 = new Thread(new Runnable() {
            public void run() {
                Singleton singleton2 = Singleton.getInstance();
                System.out.println("singleton2的hashCode:"+singleton2.hashCode());
            }
        });
        thread1.start();
        thread2.start();
    }
}

运行结果:

singleton2的hashCode:1813990537
singleton1的hashCode:1430007319

从两次运行结果来看,我们发现singleton1与singleton2的hashCode是不相同的,证明这种方式是线程不安全的

有点:

  1. 实现了Lazy loading的现过
  2. 相对于第四种的同步,该方法的效率得到了提升

 缺点:

  1. 在多线程环境中存在线程不安全问题

 

方式六:双重检测

 

public class Singleton {
    private static Singleton singleton;
    
    private Singleton(){
    }
    public void doAction(){
        //TODO 实现你需要做的事
    }
    public  static Singleton getInstance(){
        if (singleton == null) {
            synchronized (Singleton.class) {
                if (singleton == null) {
                    singleton = new Singleton();
                }
            }
        }
        return singleton;
    }
}

测试用例:

public class Test {
    public static void main(String[] args) {
        //多线程获取对象,线程安全
        Thread thread1 = new Thread(new Runnable() {
            public void run() {
                Singleton singleton1 = Singleton.getInstance();
                System.out.println("singleton1的hashCode:"+singleton1.hashCode());
            }
        });
        Thread thread2 = new Thread(new Runnable() {
            public void run() {
                Singleton singleton2 = Singleton.getInstance();
                System.out.println("singleton2的hashCode:"+singleton2.hashCode());
            }
        });
        thread1.start();
        thread2.start();
    }
}

运行结果:

singleton2的hashCode:1481479505
singleton1的hashCode:1481479505

优点:

  1. 线程安全
  2. 实现Lazy loading
  3. 效率较高

 

 

方式七:静态内部类

public class Singleton {
    public Singleton() {
    }
    public void doAction(){
        //TODO 实现你需要做的事
    }
    private static class SingletonInstance{
        private final static Singleton SINGLETON = new Singleton();
    }
    public  static Singleton getInstance(){
        return SingletonInstance.SINGLETON;
    }
}

测试用例:

public class Test {
    public static void main(String[] args) {
        //多线程获取对象,线程安全
        Thread thread1 = new Thread(new Runnable() {
            public void run() {
                Singleton singleton1 = Singleton.getInstance();
                System.out.println("singleton1的hashCode:"+singleton1.hashCode());
            }
        });
        Thread thread2 = new Thread(new Runnable() {
            public void run() {
                Singleton singleton2 = Singleton.getInstance();
                System.out.println("singleton2的hashCode:"+singleton2.hashCode());
            }
        });
        thread1.start();
        thread2.start();
    }
}

运行结果:

singleton2的hashCode:1481479505
singleton1的hashCode:1481479505

这种方式利用了类装载机制来保证初始化实例时只有一个线程,静态内部类在Singleton被装载时并不会立即实例化,而是在调用getInstance()时才会装载静态内部类,从而完成Singleton实例化。由于类的静态属性只会在第一次加载类的时候进行初始化,这里我们通过JVM加载类时的线程安全的特性来保证了线程安全

优点:

  1. 利用JVM加载静态内部类的机制保证多线程安全
  2. 实现Lazy loading效果
  3. 效率高

方式八:使用枚举(《Effective Java》作者的Josh Bloch提倡的方式)

 

public enum Singleton {
    INSTANCE;
    public void doAction(){
        //TODO 实现你需要做的事
    }
}

 

测试用例:

public class Test {
    public static void main(String[] args) {
        //多线程获取对象,线程安全
        Thread thread1 = new Thread(new Runnable() {
            public void run() {
                Singleton singleton1 = Singleton.INSTANCE;
                System.out.println("singleton1的hashCode:"+singleton1.hashCode());
            }
        });
        Thread thread2 = new Thread(new Runnable() {
            public void run() {
                Singleton singleton2 = Singleton.INSTANCE;
                System.out.println("singleton2的hashCode:"+singleton2.hashCode());
            }
        });
        thread1.start();
        thread2.start();
    }
}

运行结果:

singleton2的hashCode:321306952
singleton1的hashCode:321306952

优点:

  1. 线程安全(枚举实例的创建默认就是线程安全的)
  2. 不会因为序列化而产生新实例
  3. 防止反射攻击

 


 

 

破环单例模式的三种方式:反射,序列化,克隆

以双重检测方式为例测试反射,序列化,克隆是否能破环单例模式:

public class Singleton  implements Serializable,Cloneable{
    private static final long serialVersionUID = 6125990676610180062L;
    private static Singleton singleton;
    
    private Singleton(){
    }
    public void doAction(){
        //TODO 实现你需要做的事
    }
    public  static Singleton getInstance(){
        if (singleton == null) {
            synchronized (Singleton.class) {
                if (singleton == null) {
                    singleton = new Singleton();
                }
            }
        }
        return singleton;
    }
    @Override
    protected Object clone() throws CloneNotSupportedException {
        return super.clone();
    }
}

测试用例:

public class DestroySingleton {
    
    public static void main(String[] args) throws Exception {
        //通过getInstance()获取
        Singleton singleton = Singleton.getInstance();
        System.out.println("singleton的hashCode:"+singleton.hashCode());
        //通过反射获取
        Constructor<Singleton> constructor = Singleton.class.getDeclaredConstructor();
        constructor.setAccessible(true);
        Singleton reflex = constructor.newInstance();
        System.out.println("reflex的hashCode:"+reflex.hashCode());
        //通过克隆获取
        Singleton clob = (Singleton) Singleton.getInstance().clone();
        System.out.println("clob的hashCode:"+clob.hashCode());
        //通过序列化,反序列化获取
        ByteArrayOutputStream bos = new ByteArrayOutputStream();
        ObjectOutputStream oos = new ObjectOutputStream(bos);
        oos.writeObject(Singleton.getInstance());
        ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());
        ObjectInputStream ois = new ObjectInputStream(bis);
        Singleton serialize = (Singleton) ois.readObject();
        if (ois != null)    ois.close();
        if (bis != null) bis.close();
        if (oos != null) oos.close();
        if (bos != null) bos.close();
        System.out.println("serialize的hashCode:"+serialize.hashCode());
    }
}

运行结果:

singleton的hashCode:366712642
reflex的hashCode:1829164700
clob的hashCode:2018699554
serialize的hashCode:990368553

运行结果表明通过getInstance()、反射、克隆、序列化这四种方式得到的Singleton对象的hashCode是不一样的,此时单例模式已然被破环


 

如何防止反射、克隆、序列化对单例模式的破环

1、防止反射破环(虽然构造方法已私有化,但通过反射机制使用newInstance()方法构造方法也是可以被调用):

  • 首先定义一个全局变量开关isFristCreate默认为开启状态
  • 当第一次加载时将其状态更改为关闭状态

2、防止克隆破环

  • 重写clone(),直接返回单例对象

3、防止序列化破环

  • 添加readResolve(),返回Object对象
public class Singleton  implements Serializable,Cloneable{
    private static final long serialVersionUID = 6125990676610180062L;
    private static Singleton singleton;
    private static boolean isFristCreate = true;//默认是第一次创建
    
    private Singleton(){
            if (isFristCreate) {
                synchronized (Singleton.class) {
            if (isFristCreate) {
              isFristCreate = false;
            }
} }else{ throw new RuntimeException("已然被实例化一次,不能在实例化"); } } public void doAction(){ //TODO 实现你需要做的事 } public static Singleton getInstance(){ if (singleton == null) { synchronized (Singleton.class) { if (singleton == null) { singleton = new Singleton(); } } } return singleton; } @Override protected Singleton clone() throws CloneNotSupportedException { return singleton; } private Object readResolve() { return singleton; } }

测试用例:

public class DestroySingleton {
    
    public static void main(String[] args) throws Exception {
        //通过getInstance()获取
        Singleton singleton = Singleton.getInstance();
        System.out.println("singleton的hashCode:"+singleton.hashCode());
        //通过克隆获取
        Singleton clob = (Singleton) Singleton.getInstance().clone();
        System.out.println("clob的hashCode:"+clob.hashCode());
        //通过序列化,反序列化获取
        ByteArrayOutputStream bos = new ByteArrayOutputStream();
        ObjectOutputStream oos = new ObjectOutputStream(bos);
        oos.writeObject(Singleton.getInstance());
        ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());
        ObjectInputStream ois = new ObjectInputStream(bis);
        Singleton serialize = (Singleton) ois.readObject();
        if (ois != null)    ois.close();
        if (bis != null) bis.close();
        if (oos != null) oos.close();
        if (bos != null) bos.close();
        System.out.println("serialize的hashCode:"+serialize.hashCode());
        //通过反射获取
        Constructor<Singleton> constructor = Singleton.class.getDeclaredConstructor();
        constructor.setAccessible(true);
        Singleton reflex = constructor.newInstance();
        System.out.println("reflex的hashCode:"+reflex.hashCode());
    }
}

运行结果:

singleton的hashCode:366712642
clob的hashCode:366712642
serialize的hashCode:366712642
Exception in thread "main" java.lang.reflect.InvocationTargetException
    at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
    at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
    at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
    at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
    at designPatterns.singleton.doublecheck.DestroySingleton.main(DestroySingleton.java:33)
Caused by: java.lang.RuntimeException: 已然被实例化一次,不能在实例化
    at designPatterns.singleton.doublecheck.Singleton.<init>(Singleton.java:16)
    ... 5 more

 

从运行结果上看重写clone(),添加readResolve()后通过克隆和序列化得到的对象的hashCode与从getInstance()得到的对象得而hashCode值相同,而通过反射运行得到的结果符合预想的报错;因为以上三种手段对防止单例被破坏起作用了,至于枚举为什么能做到防止反射,克隆及序列化对单例的破坏将留在下次分享

  如有写的不对的地方请书友们及时指出,谨诚拜谢!!

 

posted on 2019-07-11 18:18  叫我鹏爷  阅读(5426)  评论(5编辑  收藏  举报

导航