hdu 2181 哈密顿绕行世界问题
哈密顿绕行世界问题
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5755 Accepted Submission(s):
3457
Problem Description
一个规则的实心十二面体,它的
20个顶点标出世界著名的20个城市,你从一个城市出发经过每个城市刚好一次后回到出发的城市。
Input
前20行的第i行有3个数,表示与第i个城市相邻的3个城市.第20行以后每行有1个数m,m<=20,m>=1.m=0退出.
Output
输出从第m个城市出发经过每个城市1次又回到m的所有路线,如有多条路线,按字典序输出,每行1条路线.每行首先输出是第几条路线.然后个一个:
后列出经过的城市.参看Sample output
Sample Input
2 5 20
1 3 12
2 4 10
3 5 8
1 4 6
5 7 19
6 8 17
4 7 9
8 10 16
3 9 11
10 12 15
2 11 13
12 14 20
13 15 18
11 14 16
9 15 17
7 16 18
14 17 19
6 18 20
1 13 19
5
0
Sample Output
1: 5 1 2 3 4 8 7 17 18 14 15 16 9 10 11 12 13 20 19 6 5
2: 5 1 2 3 4 8 9 10 11 12 13 20 19 18 14 15 16 17 7 6 5
3: 5 1 2 3 10 9 16 17 18 14 15 11 12 13 20 19 6 7 8 4 5
4: 5 1 2 3 10 11 12 13 20 19 6 7 17 18 14 15 16 9 8 4 5
5: 5 1 2 12 11 10 3 4 8 9 16 15 14 13 20 19 18 17 7 6 5
6: 5 1 2 12 11 15 14 13 20 19 18 17 16 9 10 3 4 8 7 6 5
7: 5 1 2 12 11 15 16 9 10 3 4 8 7 17 18 14 13 20 19 6 5
8: 5 1 2 12 11 15 16 17 18 14 13 20 19 6 7 8 9 10 3 4 5
9: 5 1 2 12 13 20 19 6 7 8 9 16 17 18 14 15 11 10 3 4 5
10: 5 1 2 12 13 20 19 18 14 15 11 10 3 4 8 9 16 17 7 6 5
11: 5 1 20 13 12 2 3 4 8 7 17 16 9 10 11 15 14 18 19 6 5
12: 5 1 20 13 12 2 3 10 11 15 14 18 19 6 7 17 16 9 8 4 5
13: 5 1 20 13 14 15 11 12 2 3 10 9 16 17 18 19 6 7 8 4 5
14: 5 1 20 13 14 15 16 9 10 11 12 2 3 4 8 7 17 18 19 6 5
15: 5 1 20 13 14 15 16 17 18 19 6 7 8 9 10 11 12 2 3 4 5
16: 5 1 20 13 14 18 19 6 7 17 16 15 11 12 2 3 10 9 8 4 5
17: 5 1 20 19 6 7 8 9 10 11 15 16 17 18 14 13 12 2 3 4 5
18: 5 1 20 19 6 7 17 18 14 13 12 2 3 10 11 15 16 9 8 4 5
19: 5 1 20 19 18 14 13 12 2 3 4 8 9 10 11 15 16 17 7 6 5
20: 5 1 20 19 18 17 16 9 10 11 15 14 13 12 2 3 4 8 7 6 5
21: 5 4 3 2 1 20 13 12 11 10 9 8 7 17 16 15 14 18 19 6 5
22: 5 4 3 2 1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
23: 5 4 3 2 12 11 10 9 8 7 6 19 18 17 16 15 14 13 20 1 5
24: 5 4 3 2 12 13 14 18 17 16 15 11 10 9 8 7 6 19 20 1 5
25: 5 4 3 10 9 8 7 6 19 20 13 14 18 17 16 15 11 12 2 1 5
26: 5 4 3 10 9 8 7 17 16 15 11 12 2 1 20 13 14 18 19 6 5
27: 5 4 3 10 11 12 2 1 20 13 14 15 16 9 8 7 17 18 19 6 5
28: 5 4 3 10 11 15 14 13 12 2 1 20 19 18 17 16 9 8 7 6 5
29: 5 4 3 10 11 15 14 18 17 16 9 8 7 6 19 20 13 12 2 1 5
30: 5 4 3 10 11 15 16 9 8 7 17 18 14 13 12 2 1 20 19 6 5
31: 5 4 8 7 6 19 18 17 16 9 10 3 2 12 11 15 14 13 20 1 5
32: 5 4 8 7 6 19 20 13 12 11 15 14 18 17 16 9 10 3 2 1 5
33: 5 4 8 7 17 16 9 10 3 2 1 20 13 12 11 15 14 18 19 6 5
34: 5 4 8 7 17 18 14 13 12 11 15 16 9 10 3 2 1 20 19 6 5
35: 5 4 8 9 10 3 2 1 20 19 18 14 13 12 11 15 16 17 7 6 5
36: 5 4 8 9 10 3 2 12 11 15 16 17 7 6 19 18 14 13 20 1 5
37: 5 4 8 9 16 15 11 10 3 2 12 13 14 18 17 7 6 19 20 1 5
38: 5 4 8 9 16 15 14 13 12 11 10 3 2 1 20 19 18 17 7 6 5
39: 5 4 8 9 16 15 14 18 17 7 6 19 20 13 12 11 10 3 2 1 5
40: 5 4 8 9 16 17 7 6 19 18 14 15 11 10 3 2 12 13 20 1 5
41: 5 6 7 8 4 3 2 12 13 14 15 11 10 9 16 17 18 19 20 1 5
42: 5 6 7 8 4 3 10 9 16 17 18 19 20 13 14 15 11 12 2 1 5
43: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5
44: 5 6 7 8 9 16 17 18 19 20 1 2 12 13 14 15 11 10 3 4 5
45: 5 6 7 17 16 9 8 4 3 10 11 15 14 18 19 20 13 12 2 1 5
46: 5 6 7 17 16 15 11 10 9 8 4 3 2 12 13 14 18 19 20 1 5
47: 5 6 7 17 16 15 11 12 13 14 18 19 20 1 2 3 10 9 8 4 5
48: 5 6 7 17 16 15 14 18 19 20 13 12 11 10 9 8 4 3 2 1 5
49: 5 6 7 17 18 19 20 1 2 3 10 11 12 13 14 15 16 9 8 4 5
50: 5 6 7 17 18 19 20 13 14 15 16 9 8 4 3 10 11 12 2 1 5
51: 5 6 19 18 14 13 20 1 2 12 11 15 16 17 7 8 9 10 3 4 5
52: 5 6 19 18 14 15 11 10 9 16 17 7 8 4 3 2 12 13 20 1 5
53: 5 6 19 18 14 15 11 12 13 20 1 2 3 10 9 16 17 7 8 4 5
54: 5 6 19 18 14 15 16 17 7 8 9 10 11 12 13 20 1 2 3 4 5
55: 5 6 19 18 17 7 8 4 3 2 12 11 10 9 16 15 14 13 20 1 5
56: 5 6 19 18 17 7 8 9 16 15 14 13 20 1 2 12 11 10 3 4 5
57: 5 6 19 20 1 2 3 10 9 16 15 11 12 13 14 18 17 7 8 4 5
58: 5 6 19 20 1 2 12 13 14 18 17 7 8 9 16 15 11 10 3 4 5
59: 5 6 19 20 13 12 11 10 9 16 15 14 18 17 7 8 4 3 2 1 5
60: 5 6 19 20 13 14 18 17 7 8 4 3 10 9 16 15 11 12 2 1 5
//思路:这题就是简单的dfs,题中给出的是3个与该点相连的点,用一个map直接输入存储就好,比较坑的输出那个:
后是两个空格我很智障的pe了好几波。。还是看样例不仔细。。。
在就是输出每一组数据的时候需要注意是num==19&&t==m,我们还没有走回m,所以应该是19步
#include<stdio.h> #include<string.h> int map[22][22]; int book[22]; int m,count; int ans[22]; void dfs(int step,int num) { int i; ans[num]=step; for(i=0;i<3;i++) {int t=map[step][i]; if(t==m&&num==19) { printf("%d: ",count++); for(int j=0;j<=19;j++) printf("%d ",ans[j]); printf("%d\n",m); } if(!book[t]) { book[t]=1; dfs(t,num+1); book[t]=0; } } } int main() { int i; for(i=1;i<=20;i++) { scanf("%d %d %d",&map[i][0],&map[i][1],&map[i][2]); } while(scanf("%d",&m)!=EOF) { if(m==0) break; count=1; memset(book,0,sizeof(book)); memset(ans,0,sizeof(ans)); book[m]=1; dfs(m,0); } return 0; }