PAT 甲级 1081 Rational Sum (20分)(多个分式相加,gcd忘了)*
Given N rational numbers in the form numerator/denominator
, you are supposed to calculate their sum.
Input Specification:
Each input file contains one test case. Each case starts with a positive integer N (≤), followed in the next line N rational numbers a1/b1 a2/b2 ...
where all the numerators and denominators are in the range of long int. If there is a negative number, then the sign must appear in front of the numerator.
Output Specification:
For each test case, output the sum in the simplest form integer numerator/denominator
where integer
is the integer part of the sum, numerator
< denominator
, and the numerator and the denominator have no common factor. You must output only the fractional part if the integer part is 0.
Sample Input 1:
5
2/5 4/15 1/30 -2/60 8/3
Sample Output 1:
3 1/3
Sample Input 2:
2
4/3 2/3
Sample Output 2:
2
Sample Input 3:
3
1/3 -1/6 1/8
Sample Output 3:
7/24
题意:
给N个有理数(以分⼦/分⺟的形式给出),计算这N个数的总和,最后总和要以(整数 分⼦/分⺟)的形式给出~没整数就不给整数,分子是0,就不给分数
题解:
先根据分数加法的公式累加,后分离出整数部分和分数部分分⼦和分⺟都在⻓整型内,所以不能⽤int存储,否则有⼀个测试点不通过⼀开始⼀直是浮点错误,按理来说应该是出现了/0或者%0的情况,找了半天也不知道错在哪⾥,后来注意到应该在累加的时候考虑是否会超出long long的范围,所以在累加每⼀步之前进⾏分⼦分⺟的约分处理,然后就AC了~
最小公倍数,最小公因数的gcd有点忘记了,回来要复习呀~
AC代码:
#include<bits/stdc++.h> using namespace std; typedef long long ll; ll a; ll b; int n; ll gcd(ll x,ll y){ return y == 0 ? x : gcd(y , x % y); } int main(){ cin>>n; char c; ll fenzi=0;//初始化 ll fenmu=1; for(int i=1;i<=n;i++){ cin>>a>>c>>b; if(b<0){//分母<0特殊处理 a=-1*a; b=-1*b; } ll gc=gcd(fenmu,b); fenzi = fenzi*b*gc + a*fenmu*gc;//先分子,再分母 fenmu=fenmu*b*gc; gc=gcd(fenmu,fenzi);//要通分,否则会爆ll浮点错误 fenmu/=gc; fenzi/=gc; } ll zheng = fenzi/fenmu; fenzi = fenzi%fenmu; if(fenzi==0) cout<<zheng; else{ if(zheng==0){ cout<<fenzi<<"/"<<fenmu; }else{ cout<<zheng<<" "; cout<<fenzi<<"/"<<fenmu; } } return 0; }