esp32 使用TFTe_SPI库在TFTlcd播放视频

播放思路来自:https://www.instructables.com/Play-Video-With-ESP32/

参考代码:https://github.com/moononournation/RGB565_video

我参考的是这个工程:

 

 但是这里教程里面使用的是Arduino_GFX Library库来驱动TFT lcd,存在两个问题:

1,lvgl采用Arduino_GFX Library库来移植到TFTlcd上时,显示会畸变,颜色不对(我的是这样的)。

2,所以要使用lvgl,得用TFTe_SPI库,但是该参考项目是基于Arduino_GFX Library库的,我们的移植过来。

 

视频格式采用MJPEG,这样更快点,视频支持的帧率会更高。

 

视频播放是在前面博客搭建的框架下加入的。

移植:

1,参考前面的工程代码,需要在display.h,display.c中加入一些东西,其实就是将TFT_eSPI *tft实例声明一下,让外部文件也可以用,这是因为在lvgl中播放视频的话,参考前面博客讲解的思路,处理很慢,视频估计就几帧的帧率,所以需要直接去操控TFT_eSPI *tft,增加刷新速度,以此增加视频帧率。代码如下红色方框所示:

.c文件:

 

 .h文件:

 

 2,如下图所示,参考工程里面除了arduino文件外,还有三个代码,他们就是实现视频播放,视频格式解码的。

 

 先贴上里面的源代码:

MjpegClass.h

#ifndef _MJPEGCLASS_H_
#define _MJPEGCLASS_H_

#pragma GCC optimize("O3")

#define READ_BUFFER_SIZE 2048

#include <esp_heap_caps.h>
#include <FS.h>
#include <Arduino_TFT.h>
#include "tjpgdClass.h"

class MjpegClass
{
public:
  bool setup(File input, uint8_t *mjpeg_buf, Arduino_TFT *tft, bool multiTask)
  {
    _input = input;
    _mjpeg_buf = mjpeg_buf;
    _tft = tft;
    _multiTask = multiTask;

    _tft_width = gfx->width();
    _tft_height = gfx->height();

    if (!_read_buf)
    {
      _read_buf = (uint8_t *)malloc(READ_BUFFER_SIZE);
    }
    for (int i = 0; i < 2; ++i)
    {
      if (!_out_bufs[i])
      {
        _out_bufs[i] = (uint8_t *)heap_caps_malloc(_tft_width * 48 * 2, MALLOC_CAP_DMA);
      }
    }

    _out_buf = _out_bufs[0];

    if (_multiTask)
    {
      _jdec.multitask_begin();
    }

    return true;
  }

  bool readMjpegBuf()
  {
    if (_inputindex == 0)
    {
      _buf_read = _input.read(_read_buf, READ_BUFFER_SIZE);
      _inputindex += _buf_read;
    }
    _mjpeg_buf_offset = 0;
    int i = 3;
    bool found_FFD9 = false;
    if (_buf_read > 0)
    {
      i = 3;
      while ((_buf_read > 0) && (!found_FFD9))
      {
        if ((_mjpeg_buf_offset > 0) && (_mjpeg_buf[_mjpeg_buf_offset - 1] == 0xFF) && (_read_buf[0] == 0xD9)) // JPEG trailer
        {
          found_FFD9 = true;
        }
        else
        {
          while ((i < _buf_read) && (!found_FFD9))
          {
            if ((_read_buf[i] == 0xFF) && (_read_buf[i + 1] == 0xD9)) // JPEG trailer
            {
              found_FFD9 = true;
              ++i;
            }
            ++i;
          }
        }

        // Serial.printf("i: %d\n", i);
        memcpy(_mjpeg_buf + _mjpeg_buf_offset, _read_buf, i);
        _mjpeg_buf_offset += i;
        size_t o = _buf_read - i;
        if (o > 0)
        {
          // Serial.printf("o: %d\n", o);
          memcpy(_read_buf, _read_buf + i, o);
          _buf_read = _input.read(_read_buf + o, READ_BUFFER_SIZE - o);
          _inputindex += _buf_read;
          _buf_read += o;
          // Serial.printf("_buf_read: %d\n", _buf_read);
        }
        else
        {
          _buf_read = _input.read(_read_buf, READ_BUFFER_SIZE);
          _inputindex += _buf_read;
        }
        i = 0;
      }
      if (found_FFD9)
      {
        return true;
      }
    }

    return false;
  }

  bool drawJpg()
  {
    _fileindex = 0;
    _remain = _mjpeg_buf_offset;
    TJpgD::JRESULT jres = _jdec.prepare(jpgRead, this);
    if (jres != TJpgD::JDR_OK)
    {
      Serial.printf("prepare failed! %d\r\n", jres);
      return false;
    }

    _out_width = std::min<int32_t>(_jdec.width, _tft_width);
    _jpg_x = (_tft_width - _jdec.width) >> 1;
    if (0 > _jpg_x)
    {
      _off_x = -_jpg_x;
      _jpg_x = 0;
    }
    else
    {
      _off_x = 0;
    }
    _out_height = std::min<int32_t>(_jdec.height, _tft_height);
    _jpg_y = (_tft_height - _jdec.height) >> 1;
    if (0 > _jpg_y)
    {
      _off_y = -_jpg_y;
      _jpg_y = 0;
    }
    else
    {
      _off_y = 0;
    }

    if (_multiTask)
    {
      jres = _jdec.decomp_multitask(jpgWrite16, jpgWriteRow);
    }
    else
    {
      jres = _jdec.decomp(jpgWrite16, jpgWriteRow);
    }

    if (jres != TJpgD::JDR_OK)
    {
      Serial.printf("decomp failed! %d\r\n", jres);
      return false;
    }
    return true;
  }

private:
  File _input;
  uint8_t *_read_buf;
  uint8_t *_mjpeg_buf;
  int32_t _mjpeg_buf_offset = 0;

  Arduino_TFT *_tft;
  bool _multiTask;
  uint8_t *_out_bufs[2];
  uint8_t *_out_buf;
  TJpgD _jdec;

  int32_t _inputindex = 0;
  int32_t _buf_read;
  int32_t _remain = 0;
  uint32_t _fileindex;

  int32_t _tft_width;
  int32_t _tft_height;
  int32_t _out_width;
  int32_t _out_height;
  int32_t _off_x;
  int32_t _off_y;
  int32_t _jpg_x;
  int32_t _jpg_y;

  static uint32_t jpgRead(TJpgD *jdec, uint8_t *buf, uint32_t len)
  {
    MjpegClass *me = (MjpegClass *)jdec->device;
    if (len > me->_remain)
      len = me->_remain;
    if (buf)
    {
      memcpy(buf, (const uint8_t *)me->_mjpeg_buf + me->_fileindex, len);
    }
    me->_fileindex += len;
    me->_remain -= len;
    return len;
  }

  // for 16bit color panel
  static uint32_t jpgWrite16(TJpgD *jdec, void *bitmap, TJpgD::JRECT *rect)
  {
    MjpegClass *me = (MjpegClass *)jdec->device;

    uint16_t *dst = (uint16_t *)me->_out_buf;

    uint_fast16_t x = rect->left;
    uint_fast16_t y = rect->top;
    uint_fast16_t w = rect->right + 1 - x;
    uint_fast16_t h = rect->bottom + 1 - y;
    uint_fast16_t outWidth = me->_out_width;
    uint_fast16_t outHeight = me->_out_height;
    uint8_t *src = (uint8_t *)bitmap;
    uint_fast16_t oL = 0, oR = 0;

    if (rect->right < me->_off_x)
      return 1;
    if (x >= (me->_off_x + outWidth))
      return 1;
    if (rect->bottom < me->_off_y)
      return 1;
    if (y >= (me->_off_y + outHeight))
      return 1;

    if (me->_off_y > y)
    {
      uint_fast16_t linesToSkip = me->_off_y - y;
      src += linesToSkip * w * 3;
      h -= linesToSkip;
    }

    if (me->_off_x > x)
    {
      oL = me->_off_x - x;
    }
    if (rect->right >= (me->_off_x + outWidth))
    {
      oR = (rect->right + 1) - (me->_off_x + outWidth);
    }

    int_fast16_t line = (w - (oL + oR));
    dst += oL + x - me->_off_x;
    src += oL * 3;
    do
    {
      int i = 0;
      do
      {
        uint_fast8_t r8 = src[i * 3 + 0] & 0xF8;
        uint_fast8_t g8 = src[i * 3 + 1];
        uint_fast8_t b5 = src[i * 3 + 2] >> 3;
        r8 |= g8 >> 5;
        g8 &= 0x1C;
        b5 = (g8 << 3) + b5;
        dst[i] = r8 | b5 << 8;
      } while (++i != line);
      dst += outWidth;
      src += w * 3;
    } while (--h);

    return 1;
  }

  static uint32_t jpgWriteRow(TJpgD *jdec, uint32_t y, uint32_t h)
  {
    static int flip = 0;
    MjpegClass *me = (MjpegClass *)jdec->device;
    if (y == 0)
    {
      me->_tft->setAddrWindow(me->_jpg_x, me->_jpg_y, jdec->width, jdec->height);
    }

    me->_tft->startWrite();
    me->_tft->writeBytes((uint8_t *)me->_out_buf, jdec->width * h * 2);
    me->_tft->endWrite();

    flip = !flip;
    me->_out_buf = me->_out_bufs[flip];

    return 1;
  }
};

#endif // _MJPEGCLASS_H_

tjpgdClass.cpp

/*----------------------------------------------------------------------------/
/ TJpgDec - Tiny JPEG Decompressor R0.01c                     (C)ChaN, 2019
/-----------------------------------------------------------------------------/
/ The TJpgDec is a generic JPEG decompressor module for tiny embedded systems.
/ This is a free software that opened for education, research and commercial
/  developments under license policy of following terms.
/
/  Copyright (C) 2019, ChaN, all right reserved.
/
/ * The TJpgDec module is a free software and there is NO WARRANTY.
/ * No restriction on use. You can use, modify and redistribute it for
/   personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
/ * Redistributions of source code must retain the above copyright notice.
/
/-----------------------------------------------------------------------------/
/ Oct 04, 2011 R0.01  First release.
/ Feb 19, 2012 R0.01a Fixed decompression fails when scan starts with an escape seq.
/ Sep 03, 2012 R0.01b Added JD_TBLCLIP option.
/ Mar 16, 2019 R0.01c Supprted stdint.h.
/----------------------------------------------------------------------------/
/ May 2019 ~ July 2020  Tweak for ESP32 ( modify by lovyan03 )
/----------------------------------------------------------------------------*/

#pragma GCC optimize ("O3")

#include "tjpgdClass.h"

#include <string.h> // for memcpy memset
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <freertos/queue.h>


/*-----------------------------------------------*/
/* Zigzag-order to raster-order conversion table */
/*-----------------------------------------------*/

#define ZIG(n)    Zig[n]

static const uint8_t Zig[64] = {    /* Zigzag-order to raster-order conversion table */
     0,  1,  8, 16,  9,  2,  3, 10, 17, 24, 32, 25, 18, 11,  4,  5,
    12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13,  6,  7, 14, 21, 28,
    35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
    58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63
};



/*-------------------------------------------------*/
/* Input scale factor of Arai algorithm            */
/* (scaled up 16 bits for fixed point operations)  */
/*-------------------------------------------------*/

#define IPSF(n)    Ipsf[n]

static const uint16_t Ipsf[64] = {    /* See also aa_idct.png */
    (uint16_t)(1.00000*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.17588*8192), (uint16_t)(1.00000*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.27590*8192),
    (uint16_t)(1.38704*8192), (uint16_t)(1.92388*8192), (uint16_t)(1.81226*8192), (uint16_t)(1.63099*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.08979*8192), (uint16_t)(0.75066*8192), (uint16_t)(0.38268*8192),
    (uint16_t)(1.30656*8192), (uint16_t)(1.81226*8192), (uint16_t)(1.70711*8192), (uint16_t)(1.53636*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.02656*8192), (uint16_t)(0.70711*8192), (uint16_t)(0.36048*8192),
    (uint16_t)(1.17588*8192), (uint16_t)(1.63099*8192), (uint16_t)(1.53636*8192), (uint16_t)(1.38268*8192), (uint16_t)(1.17588*8192), (uint16_t)(0.92388*8192), (uint16_t)(0.63638*8192), (uint16_t)(0.32442*8192),
    (uint16_t)(1.00000*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.17588*8192), (uint16_t)(1.00000*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.27590*8192),
    (uint16_t)(0.78570*8192), (uint16_t)(1.08979*8192), (uint16_t)(1.02656*8192), (uint16_t)(0.92388*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.61732*8192), (uint16_t)(0.42522*8192), (uint16_t)(0.21677*8192),
    (uint16_t)(0.54120*8192), (uint16_t)(0.75066*8192), (uint16_t)(0.70711*8192), (uint16_t)(0.63638*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.42522*8192), (uint16_t)(0.29290*8192), (uint16_t)(0.14932*8192),
    (uint16_t)(0.27590*8192), (uint16_t)(0.38268*8192), (uint16_t)(0.36048*8192), (uint16_t)(0.32442*8192), (uint16_t)(0.27590*8192), (uint16_t)(0.21678*8192), (uint16_t)(0.14932*8192), (uint16_t)(0.07612*8192)
};



/*---------------------------------------------*/
/* Output bayer pattern table                  */
/*---------------------------------------------*/

static const int8_t Bayer[8][32] = {
    { 0, 4, 1, 5,  0, 4, 1, 5, -2, 2,-1, 3, -2, 2,-1, 3,  1, 5, 0, 4,  1, 5, 0, 4, -1, 3,-2, 2, -1, 3,-2, 2},
    { 1, 5, 0, 4,  1, 5, 0, 4, -1, 3,-2, 2, -1, 3,-2, 2,  0, 4, 1, 5,  0, 4, 1, 5, -2, 2,-1, 3, -2, 2,-1, 3},
    { 2,-1, 3,-2,  2,-1, 3,-2,  5, 0, 4, 1,  5, 0, 4, 1,  3,-2, 2,-1,  3,-2, 2,-1,  4, 1, 5, 0,  4, 1, 5, 0},
    { 3,-2, 2,-1,  3,-2, 2,-1,  4, 1, 5, 0,  4, 1, 5, 0,  2,-1, 3,-2,  2,-1, 3,-2,  5, 0, 4, 1,  5, 0, 4, 1},
    { 4, 1, 5, 0,  4, 1, 5, 0,  2,-1, 3,-2,  2,-1, 3,-2,  5, 0, 4, 1,  5, 0, 4, 1,  3,-2, 2,-1,  3,-2, 2,-1},
    { 5, 0, 4, 1,  5, 0, 4, 1,  3,-2, 2,-1,  3,-2, 2,-1,  4, 1, 5, 0,  4, 1, 5, 0,  2,-1, 3,-2,  2,-1, 3,-2},
    {-2, 2,-1, 3, -2, 2,-1, 3,  1, 5, 0, 4,  1, 5, 0, 4, -1, 3,-2, 2, -1, 3,-2, 2,  0, 4, 1, 5,  0, 4, 1, 5},
    {-1, 3,-2, 2, -1, 3,-2, 2,  0, 4, 1, 5,  0, 4, 1, 5, -2, 2,-1, 3, -2, 2,-1, 3,  1, 5, 0, 4,  1, 5, 0, 4}
};

/*---------------------------------------------*/
/* Conversion table for fast clipping process  */
/*---------------------------------------------*/

#if JD_TBLCLIP

#define BYTECLIP(v) Clip8[(uint16_t)(v) & 0x3FF]

static const uint8_t Clip8[1024] = {
    /* 0..255 */
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
    32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
    64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
    96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
    128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
    160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
    192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,
    224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255,
    /* 256..511 */
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    /* -512..-257 */
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    /* -256..-1 */
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

#else    /* JD_TBLCLIP */

inline uint_fast8_t BYTECLIP (
    int32_t val
)
{
    if (val < 0) val = 0;
    else if (val > 255) val = 255;

    return val;
}

#endif


/*-----------------------------------------------------------------------*/
/* Allocate a memory block from memory pool                              */
/*-----------------------------------------------------------------------*/

static void* alloc_pool (    /* Pointer to allocated memory block (NULL:no memory available) */
    TJpgD* jd,        /* Pointer to the decompressor object */
    uint_fast16_t nd        /* Number of bytes to allocate */
)
{
    char *rp = 0;


    nd = (nd + 3) & ~3;            /* Align block size to the word boundary */

    if (jd->sz_pool >= nd) {
        jd->sz_pool -= nd;
        rp = (char*)jd->pool;            /* Get start of available memory pool */
        jd->pool = (void*)(rp + nd);    /* Allocate requierd bytes */
    }

    return (void*)rp;    /* Return allocated memory block (NULL:no memory to allocate) */
}




/*-----------------------------------------------------------------------*/
/* Create de-quantization and prescaling tables with a DQT segment       */
/*-----------------------------------------------------------------------*/

static int create_qt_tbl (    /* 0:OK, !0:Failed */
    TJpgD* jd,                /* Pointer to the decompressor object */
    const uint8_t* data,    /* Pointer to the quantizer tables */
    uint_fast16_t ndata            /* Size of input data */
)
{
    uint_fast8_t d, z;
    int32_t *pb;

    do {    /* Process all tables in the segment */
        d = *data++;                            /* Get table property */
        if (d & 0xF0) return TJpgD::JDR_FMT1;            /* Err: not 8-bit resolution */
        pb = (int32_t*)alloc_pool(jd, 64 * sizeof (int32_t));/* Allocate a memory block for the table */
        if (!pb) return TJpgD::JDR_MEM1;                /* Err: not enough memory */
        jd->qttbl[d & 3] = pb;                        /* Register the table */
        for (size_t i = 0; i < 64; ++i) {            /* Load the table */
            z = ZIG(i);                            /* Zigzag-order to raster-order conversion */
            pb[z] = (int32_t)((uint32_t)data[i] * IPSF(z));    /* Apply scale factor of Arai algorithm to the de-quantizers */
        }
        data += 64;
    } while (ndata -= 65);

    return TJpgD::JDR_OK;
}




/*-----------------------------------------------------------------------*/
/* Create huffman code tables with a DHT segment                         */
/*-----------------------------------------------------------------------*/

static int create_huffman_tbl (    /* 0:OK, !0:Failed */
    TJpgD* jd,                    /* Pointer to the decompressor object */
    const uint8_t* data,        /* Pointer to the packed huffman tables */
    uint_fast16_t ndata                /* Size of input data */
)
{
    uint_fast16_t d, b, np, cls, num, hc;
    uint8_t *pb, *pd;
    uint_fast16_t *ph;


    do {    /* Process all tables in the segment */
        d = *data++;                        /* Get table number and class */
        if (d & 0xEE) return TJpgD::JDR_FMT1;        /* Err: invalid class/number */
        cls = d >> 4; num = d & 0x0F;        /* class = dc(0)/ac(1), table number = 0/1 */
        pb = (uint8_t*)alloc_pool(jd, 16);            /* Allocate a memory block for the bit distribution table */
        if (!pb) return TJpgD::JDR_MEM1;            /* Err: not enough memory */
        jd->huffbits[num][cls] = pb - 1;
        np = 0;
        for (size_t i = 0; i < 16; ++i) {        /* Load number of patterns for 1 to 16-bit code */
            np += (pb[i] = data[i]);        /* Get sum of code words for each code */
        }

        ph = (uint_fast16_t*)alloc_pool(jd, (np * sizeof (uint_fast16_t)));/* Allocate a memory block for the code word table */
        if (!ph) return TJpgD::JDR_MEM1;            /* Err: not enough memory */
        jd->huffcode[num][cls] = ph - 1;
        hc = 0;
        for (size_t i = 0; i < 16; ++i) {        /* Re-build huffman code word table */
            b = pb[i];
            while (b--) *ph++ = hc++;
            hc <<= 1;
        }

        pd = (uint8_t*)alloc_pool(jd, np);            /* Allocate a memory block for the decoded data */
        if (!pd) return TJpgD::JDR_MEM1;            /* Err: not enough memory */
        jd->huffdata[num][cls] = pd - 1;

        memcpy(pd, data += 16, np);        /* Load decoded data corresponds to each code ward */
        data += np;
    } while (ndata -= 17 + np);

    return TJpgD::JDR_OK;
}




/*-----------------------------------------------------------------------*/
/* Extract N bits from input stream                                      */
/*-----------------------------------------------------------------------*/

static inline int_fast16_t bitext (    /* >=0: extracted data, <0: error code */
    TJpgD* jd,        /* Pointer to the decompressor object */
    int_fast16_t nbit        /* Number of bits to extract (1 to 11) */
)
{
    uint8_t *dp = jd->dptr;    /* Bit mask, number of data available, read ptr */
    uint_fast8_t s = *dp;
    uint_fast8_t msk = jd->dmsk;
    uint_fast16_t v = 0;

    if (msk) {
        if (msk >= nbit) {
            msk -= nbit;
            jd->dmsk = msk;
            return (s >> msk) & ((1 << nbit) - 1);    /* Get bits */
        }
        nbit -= msk;
        v = (s & ((1 << msk) - 1)) << nbit;    /* Get bits */
    }

    uint8_t *dpend = jd->dpend;

    for (;;) {
        if (++dp == dpend) {            /* No input data is available, re-fill input buffer */
            dp = jd->inbuf;    /* Top of input buffer */
            jd->dpend = dpend = dp + jd->infunc(jd, dp, TJPGD_SZBUF);
            if (dp == dpend) return 0 - (int_fast16_t)TJpgD::JDR_INP;    /* Err: read error or wrong stream termination */
        }
        s = *dp;                /* Get next data byte */
        if (s == 0xFF) {        /* Is start of flag sequence? */
            if (++dp == dpend) {            /* No input data is available, re-fill input buffer */
                dp = jd->inbuf;    /* Top of input buffer */
                jd->dpend = dpend = dp + jd->infunc(jd, dp, TJPGD_SZBUF);
                if (dp == dpend) return 0 - (int_fast16_t)TJpgD::JDR_INP;    /* Err: read error or wrong stream termination */
            }
            if (*dp != 0) return 0 - (int_fast16_t)TJpgD::JDR_FMT1;    /* Err: unexpected flag is detected (may be collapted data) */
            *dp = s;            /* The flag is a data 0xFF */
        }
        if (8 >= nbit) {
            msk = 8 - nbit;
            jd->dmsk = msk; jd->dptr = dp;
            return v + ((s >> msk) & ((1 << nbit) - 1));    /* Get bits */
        }
        nbit -= 8;
        v |= s << nbit;    /* Get bits */
    }
}




/*-----------------------------------------------------------------------*/
/* Extract a huffman decoded data from input stream                      */
/*-----------------------------------------------------------------------*/

static int_fast16_t huffext (    /* >=0: decoded data, <0: error code */
    TJpgD* jd,                /* Pointer to the decompressor object */
    const uint8_t* hbits,    /* Pointer to the bit distribution table */
    const uint_fast16_t* hcode,    /* Pointer to the code word table */
    const uint8_t* hdata    /* Pointer to the data table */
)
{
    uint_fast8_t msk = jd->dmsk;
    uint8_t *dpend = jd->dpend;    /* Bit mask, number of data available, read ptr */
    uint8_t *dp = jd->dptr;
    uint_fast8_t s = *dp;
    uint_fast8_t v = 0;
    uint_fast8_t bl = 16;    /* Max code length */

    for (;;) {
        if (!msk) {                /* Next byte? */
            msk = 8;            /* Read from MSB */
            if (++dp == dpend) {            /* No input data is available, re-fill input buffer */
                dp = jd->inbuf;    /* Top of input buffer */
                jd->dpend = dpend = dp + jd->infunc(jd, dp, TJPGD_SZBUF);
                if (dp == dpend) return 0 - (int_fast16_t)TJpgD::JDR_INP;    /* Err: read error or wrong stream termination */
            }
            s = *dp;                /* Get next data byte */
            if (s == 0xFF) {        /* Is start of flag sequence? */
                if (++dp == dpend) {            /* No input data is available, re-fill input buffer */
                    dp = jd->inbuf;    /* Top of input buffer */
                    jd->dpend = dpend = dp + jd->infunc(jd, dp, TJPGD_SZBUF);
                    if (dp == dpend) return 0 - (int_fast16_t)TJpgD::JDR_INP;    /* Err: read error or wrong stream termination */
                }
                if (*dp != 0) return 0 - (int_fast16_t)TJpgD::JDR_FMT1;    /* Err: unexpected flag is detected (may be collapted data) */
                *dp = s;            /* The flag is a data 0xFF */
            }
        }
        do {
            v = (v << 1) + ((s >> (--msk)) & 1);    /* Get a bit */
            uint_fast8_t nd = *++hbits;
            if (nd) {
                do {
                    ++hdata;
                    if (v == *++hcode) goto huffext_match;    /* Matched? */
                } while (--nd);    /* Search the code word in this bit length */
            }
            if (!--bl) return 0 - (int_fast16_t)TJpgD::JDR_FMT1;    /* Err: code not found (may be collapted data) */
        } while (msk);
    }
huffext_match:
    jd->dmsk = msk;
    jd->dptr = dp;
    return *hdata;                    /* Return the decoded data */
}

/*-----------------------------------------------------------------------*/
/* Apply Inverse-DCT in Arai Algorithm (see also aa_idct.png)            */
/*-----------------------------------------------------------------------*/

static void block_idct (
    int32_t* src,    /* Input block data (de-quantized and pre-scaled for Arai Algorithm) */
    uint8_t* dst    /* Pointer to the destination to store the block as byte array */
)
{
    const int32_t M13 = (int32_t)(1.41421*256), M4 = (int32_t)(2.61313*256);
    const float F2 = 1.08239, F5 = 1.84776;

    int32_t v0, v1, v2, v3, v4, v5, v6, v7;
    int32_t t10, t11, t12, t13;

    /* Process columns */
    for (size_t i = 0; i < 8; ++i) {
        /* Get and Process the even elements */
        t12 = src[8 * 0];
        t10 = src[8 * 4];
        t10 += t12;
        t12 = (t12 << 1) - t10;

        t11 = src[8 * 2];
        t13 = src[8 * 6];
        t13 += t11;
        t11 = (t11 << 1) - t13;
        t11 = t11 * M13 >> 8;
        t11 = t11 - t13;

        v0 = t10 + t13;
        v3 = t10 - t13;
        v1 = t12 + t11;
        v2 = t12 - t11;

        /* Get and Process the odd elements */
        v4 = src[8 * 1];
        v5 = src[8 * 7];
        v5 += v4;
        v4 = (v4 << 1) - v5;

        v7 = src[8 * 3];
        v6 = src[8 * 5];
        v6 -= v7;
        v7 = (v7 << 1) + v6;
        v7 += v5;

        t13 = v4 + v6;
        t13 *= F5;
        v6 = v6 * M4 >> 8;
        v6 += v7;
        v6 = t13 - v6;
        v5 = (v5 << 1) - v7;
        v5 = v5 * M13 >> 8;
        v5 -= v6;
        v4 *= F2;
        v4 += v5;
        v4 = t13 - v4;

        /* Write-back transformed values */
        src[8 * 0] = v0 + v7;
        src[8 * 7] = v0 - v7;
        src[8 * 1] = v1 + v6;
        src[8 * 6] = v1 - v6;
        src[8 * 2] = v2 + v5;
        src[8 * 5] = v2 - v5;
        src[8 * 3] = v3 + v4;
        src[8 * 4] = v3 - v4;

        ++src;    /* Next column */
    }

    /* Process rows */
    src -= 8;
    for (size_t i = 0; i < 8; ++i) {
        /* Get and Process the even elements */
        t12 = src[0] + (128L << 8);    /* remove DC offset (-128) here */
        t10 = src[4];
        t10 += t12;
        t12 = (t12 << 1) - t10;

        t11 = src[2];
        t13 = src[6];
        t13 += t11;
        t11 = (t11 << 1) - t13;
        t11 = t11 * M13 >> 8;
        t11 -= t13;

        v0 = t10 + t13;
        v3 = t10 - t13;
        v1 = t12 + t11;
        v2 = t12 - t11;

        /* Get and Process the odd elements */
        v4 = src[1];
        v5 = src[7];
        v5 += v4;
        v4 = (v4 << 1) - v5;

        v7 = src[3];
        v6 = src[5];
        v6 -= v7;
        v7 = (v7 << 1) + v6;
        v7 += v5;

        t13 = v4 + v6;
        t13 *= F5;
        v6 = v6 * M4 >> 8;
        v6 += v7;
        v6 = t13 - v6;
        v5 = (v5 << 1) - v7;
        v5 = v5 * M13 >> 8;
        v5 -= v6;
        v4 *= F2;
        v4 += v5;
        v4 = t13 - v4;

        /* Descale the transformed values 8 bits and output */
        dst[0] = BYTECLIP((v0 + v7) >> 8);
        dst[7] = BYTECLIP((v0 - v7) >> 8);
        dst[1] = BYTECLIP((v1 + v6) >> 8);
        dst[6] = BYTECLIP((v1 - v6) >> 8);
        dst[2] = BYTECLIP((v2 + v5) >> 8);
        dst[5] = BYTECLIP((v2 - v5) >> 8);
        dst[3] = BYTECLIP((v3 + v4) >> 8);
        dst[4] = BYTECLIP((v3 - v4) >> 8);

        dst += 8;
        src += 8;    /* Next row */
    }
}




/*-----------------------------------------------------------------------*/
/* Load all blocks in the MCU into working buffer                        */
/*-----------------------------------------------------------------------*/

static TJpgD::JRESULT mcu_load (
    TJpgD* jd,        /* Pointer to the decompressor object */
    uint8_t* bp,        /* mcubuf */
    int32_t* tmp    /* Block working buffer for de-quantize and IDCT */
)
{
    int_fast16_t b, d, e;
    uint_fast8_t blk, nby, nbc, i, z;
    const uint8_t *hb, *hd;
    const uint_fast16_t *hc;

    nby = jd->msx * jd->msy;    /* Number of Y blocks (1, 2 or 4) */
    nbc = 2;                    /* Number of C blocks (2) */

    for (blk = 0; blk < nby + nbc; blk++) {
        uint_fast8_t cmp = (blk < nby) ? 0 : blk - nby + 1;    /* Component number 0:Y, 1:Cb, 2:Cr */
        uint_fast8_t id = cmp ? 1 : 0;                        /* Huffman table ID of the component */

        /* Extract a DC element from input stream */
        hb = jd->huffbits[id][0];                /* Huffman table for the DC element */
        hc = jd->huffcode[id][0];
        hd = jd->huffdata[id][0];
        b = huffext(jd, hb, hc, hd);            /* Extract a huffman coded data (bit length) */
        if (b < 0) return (TJpgD::JRESULT)(-b);        /* Err: invalid code or input */
        d = jd->dcv[cmp];                        /* DC value of previous block */
        if (b) {                                /* If there is any difference from previous block */
            e = bitext(jd, b);                    /* Extract data bits */
            if (e < 0) return (TJpgD::JRESULT)(-e);    /* Err: input */
            b = 1 << (b - 1);                    /* MSB position */
            if (!(e & b)) e -= (b << 1) - 1;    /* Restore sign if needed */
            d += e;                                /* Get current value */
            jd->dcv[cmp] = d;            /* Save current DC value for next block */
        }
        const int32_t *dqf = jd->qttbl[jd->qtid[cmp]];            /* De-quantizer table ID for this component */
        tmp[0] = d * dqf[0] >> 8;                /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */

        /* Extract following 63 AC elements from input stream */
        memset(&tmp[1], 0, 4 * 63);                /* Clear rest of elements */
        hb = jd->huffbits[id][1];                /* Huffman table for the AC elements */
        hc = jd->huffcode[id][1];
        hd = jd->huffdata[id][1];
        i = 1;                    /* Top of the AC elements */
        do {
            b = huffext(jd, hb, hc, hd);        /* Extract a huffman coded value (zero runs and bit length) */
            if (b == 0) break;                    /* EOB? */
            if (b < 0) return (TJpgD::JRESULT)(-b);    /* Err: invalid code or input error */
            i += b >> 4;
            if (b &= 0x0F) {                    /* Bit length */
                d = bitext(jd, b);                /* Extract data bits */
                if (d < 0) return (TJpgD::JRESULT)(-d);/* Err: input device */
                b = 1 << (b - 1);                /* MSB position */
                if (!(d & b)) d -= (b << 1) - 1;/* Restore negative value if needed */
                z = ZIG(i);                        /* Zigzag-order to raster-order converted index */
                tmp[z] = d * dqf[z] >> 8;        /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */
            }
        } while (++i != 64);        /* Next AC element */

        block_idct(tmp, bp);        /* Apply IDCT and store the block to the MCU buffer */

        bp += 64;                /* Next block */
    }

    return TJpgD::JDR_OK;    /* All blocks have been loaded successfully */
}




/*-----------------------------------------------------------------------*/
/* Output an MCU: Convert YCrCb to RGB and output it in RGB form         */
/*-----------------------------------------------------------------------*/

static TJpgD::JRESULT mcu_output (
    TJpgD* jd,        /* Pointer to the decompressor object */
    uint8_t* mcubuf,
    uint8_t* workbuf,
    uint32_t (*outfunc)(TJpgD*, void*, TJpgD::JRECT*),    /* RGB output function */
    uint_fast16_t x,        /* MCU position in the image (left of the MCU) */
    uint_fast16_t y        /* MCU position in the image (top of the MCU) */
)
{
    uint_fast16_t ix, iy, mx, my, rx, ry;
    uint8_t *py, *pc;
    TJpgD::JRECT rect;

    mx = jd->msx * 8; my = jd->msy * 8;                    /* MCU size (pixel) */
    rx = (x + mx <= jd->width) ? mx : jd->width - x;    /* Output rectangular size (it may be clipped at right/bottom end) */
    ry = (y + my <= jd->height) ? my : jd->height - y;

    rect.left = x; rect.right = x + rx - 1;                /* Rectangular area in the frame buffer */
    rect.top = y; rect.bottom = y + ry - 1;

    static constexpr float frr = 1.402;
    static constexpr float fgr = 0.71414;
    static constexpr float fgb = 0.34414;
    static constexpr float fbb = 1.772;

    /* Build an RGB MCU from discrete comopnents */
    const int8_t* btbase = Bayer[jd->bayer];
    const int8_t* btbl;
    uint_fast8_t ixshift = (mx == 16);
    uint_fast8_t iyshift = (my == 16);
    iy = 0;
    uint8_t* prgb = workbuf;
    do {
        btbl = &btbase[(iy & 3) << 3];
        py = &mcubuf[((iy & 8) + iy) << 3];
        pc = &mcubuf[((mx << iyshift) + (iy >> iyshift)) << 3];
        ix = 0;
        do {
            do {
                float cb = (pc[ 0] - 128);     /* Get Cb/Cr component and restore right level */
                float cr = (pc[64] - 128);
                ++pc;

                /* Convert CbCr to RGB */
                int32_t gg = fgb * cb + fgr * cr;
                int32_t rr = frr * cr;
                int32_t bb = fbb * cb;
                int32_t yy = btbl[0] + py[0];            /* Get Y component */
                prgb[0] = BYTECLIP(yy + rr);
                prgb[1] = BYTECLIP(yy - gg);
                prgb[2] = BYTECLIP(yy + bb);
                if (ixshift) {
                    yy = btbl[1] + py[1];            /* Get Y component */
                    prgb[3] = BYTECLIP(yy + rr);
                    prgb[4] = BYTECLIP(yy - gg);
                    prgb[5] = BYTECLIP(yy + bb);
                }
                prgb += 3 << ixshift;
                btbl += 1 << ixshift;
                py += 1 << ixshift;
                ix += 1 << ixshift;
            } while (ix & 7);
            btbl -= 8;
            py += 64 - 8;    /* Jump to next block if double block heigt */
        } while (ix != mx);
    } while (++iy != my);

    if (rx < mx) {
        uint8_t *s, *d;
        s = d = (uint8_t*)workbuf;
        rx *= 3;
        mx *= 3;
        for (size_t y = 1; y < ry; ++y) {
            memcpy(d += rx, s += mx, rx);    /* Copy effective pixels */
        }
    }
    /* Output the RGB rectangular */
    return outfunc(jd, workbuf, &rect) ? TJpgD::JDR_OK : TJpgD::JDR_INTR; 
}


/*-----------------------------------------------------------------------*/
/* Process restart interval                                              */
/*-----------------------------------------------------------------------*/

static TJpgD::JRESULT restart (
    TJpgD* jd,        /* Pointer to the decompressor object */
    uint_fast16_t rstn    /* Expected restert sequense number */
)
{
    uint_fast16_t d;
    uint8_t *dp, *dpend;


    /* Discard padding bits and get two bytes from the input stream */
    dp = jd->dptr; dpend = jd->dpend;
    d = 0;
    for (size_t i = 0; i < 2; i++) {
        if (++dp == dpend) {    /* No input data is available, re-fill input buffer */
            dp = jd->inbuf;
            jd->dpend = dpend = dp + jd->infunc(jd, dp, TJPGD_SZBUF);
            if (dp == dpend) return TJpgD::JDR_INP;
        }
        d = (d << 8) | *dp;    /* Get a byte */
    }
    jd->dptr = dp; jd->dmsk = 0;

    /* Check the marker */
    if ((d & 0xFFD8) != 0xFFD0 || (d & 7) != (rstn & 7)) {
        return TJpgD::JDR_FMT1;    /* Err: expected RSTn marker is not detected (may be collapted data) */
    }

    /* Reset DC offset */
    jd->dcv[2] = jd->dcv[1] = jd->dcv[0] = 0;

    return TJpgD::JDR_OK;
}




/*-----------------------------------------------------------------------*/
/* Analyze the JPEG image and Initialize decompressor object             */
/*-----------------------------------------------------------------------*/

#define    LDB_WORD(ptr)        (uint16_t)(((uint16_t)*((uint8_t*)(ptr))<<8)|(uint16_t)*(uint8_t*)((ptr)+1))


TJpgD::JRESULT TJpgD::prepare (
    uint32_t (*infunc)(TJpgD*, uint8_t*, uint32_t),    /* JPEG strem input function */
    void* dev            /* I/O device identifier for the session */
)
{
    uint8_t *seg;
    uint_fast8_t b, marker;
    uint_fast16_t i, len;
    TJpgD::JRESULT rc;

    static constexpr uint_fast16_t sz_pool = 3900;
    static uint8_t pool[sz_pool];


    this->pool = pool;        /* Work memroy */
    this->sz_pool = sz_pool;    /* Size of given work memory */
    this->infunc = infunc;    /* Stream input function */
    this->device = dev;        /* I/O device identifier */
    this->nrst = 0;            /* No restart interval (default) */

    inbuf = seg = dptr = (uint8_t*)alloc_pool(this, TJPGD_SZBUF);        /* Allocate stream input buffer */
    if (!seg) return TJpgD::JDR_MEM1;

    uint32_t dctr = infunc(this, dptr, TJPGD_SZBUF);
    seg = dptr;
    if (dctr <= 2) return TJpgD::JDR_INP;/* Check SOI marker */
    if (LDB_WORD(seg) != 0xFFD8) return TJpgD::JDR_FMT1;    /* Err: SOI is not detected */
    dptr += 2; dctr -= 2;

    for (;;) {
        /* Get a JPEG marker */
        if (dctr < 4) {
            if (4 > (TJPGD_SZBUF - (dptr - inbuf))) return TJpgD::JDR_MEM2;
            dctr += infunc(this, dptr + dctr, 4);
            if (dctr < 4) return TJpgD::JDR_INP;
        }
        seg = dptr;
        dptr += 4;
        dctr -= 4;

        if (*seg++ != 0xFF) return TJpgD::JDR_FMT1;
        marker = *(seg++);        /* Marker */
        len = LDB_WORD(seg);    /* Length field */
        if (len <= 2) return TJpgD::JDR_FMT1;
        len -= 2;        /* Content size excluding length field */

        /* Load segment data */
        if (dctr < len) {
            if (len - dctr > (TJPGD_SZBUF - (dptr - inbuf))) return TJpgD::JDR_MEM2;
            dctr += infunc(this, dptr + dctr, len - dctr);
            if (dctr < len) return TJpgD::JDR_INP;
        }
        seg = dptr;
        dptr += len;
        dctr -= len;
        switch (marker) {
        case 0xC0:    /* SOF0 (baseline JPEG) */
            width = LDB_WORD(seg+3);        /* Image width in unit of pixel */
            height = LDB_WORD(seg+1);        /* Image height in unit of pixel */
            if (seg[5] != 3) return TJpgD::JDR_FMT3;    /* Err: Supports only Y/Cb/Cr format */

            /* Check three image components */
            for (i = 0; i < 3; i++) {
                b = seg[7 + 3 * i];                            /* Get sampling factor */
                if (!i) {    /* Y component */
                    if (b != 0x11 && b != 0x22 && b != 0x21) {    /* Check sampling factor */
                        return TJpgD::JDR_FMT3;                    /* Err: Supports only 4:4:4, 4:2:0 or 4:2:2 */
                    }
                    msx = b >> 4; msy = b & 15;        /* Size of MCU [blocks] */
                } else {    /* Cb/Cr component */
                    if (b != 0x11) return TJpgD::JDR_FMT3;            /* Err: Sampling factor of Cr/Cb must be 1 */
                }
                b = seg[8 + 3 * i];                            /* Get dequantizer table ID for this component */
                if (b > 3) return TJpgD::JDR_FMT3;                    /* Err: Invalid ID */
                qtid[i] = b;
            }
            break;

        case 0xDD:    /* DRI */
            /* Get restart interval (MCUs) */
            nrst = LDB_WORD(seg);
            break;

        case 0xC4:    /* DHT */
            /* Create huffman tables */
            rc = (TJpgD::JRESULT)create_huffman_tbl(this, seg, len);
            if (rc) return rc;
            break;

        case 0xDB:    /* DQT */
            /* Create de-quantizer tables */
            rc = (TJpgD::JRESULT)create_qt_tbl(this, seg, len);
            if (rc) return rc;
            break;

        case 0xDA:    /* SOS */
            if (!width || !height) return TJpgD::JDR_FMT1;    /* Err: Invalid image size */

            if (seg[0] != 3) return TJpgD::JDR_FMT3;                /* Err: Supports only three color components format */

            /* Check if all tables corresponding to each components have been loaded */
            for (i = 0; i < 3; i++) {
                b = seg[2 + 2 * i];    /* Get huffman table ID */
                if (b != 0x00 && b != 0x11)    return TJpgD::JDR_FMT3;    /* Err: Different table number for DC/AC element */
                b = i ? 1 : 0;
                if (!huffbits[b][0] || !huffbits[b][1]) {    /* Check dc/ac huffman table for this component */
                    return TJpgD::JDR_FMT1;                    /* Err: Nnot loaded */
                }
                if (!qttbl[qtid[i]]) {            /* Check dequantizer table for this component */
                    return TJpgD::JDR_FMT1;                    /* Err: Not loaded */
                }
            }

            /* Allocate working buffer for MCU and RGB */
            if (!msy || !msx) return TJpgD::JDR_FMT1;                    /* Err: SOF0 has not been loaded */
            dmsk = 0;
            dpend = dptr + dctr;
            --dptr;

            return TJpgD::JDR_OK;        /* Initialization succeeded. Ready to decompress the JPEG image. */

        case 0xC1:    /* SOF1 */
        case 0xC2:    /* SOF2 */
        case 0xC3:    /* SOF3 */
        case 0xC5:    /* SOF5 */
        case 0xC6:    /* SOF6 */
        case 0xC7:    /* SOF7 */
        case 0xC9:    /* SOF9 */
        case 0xCA:    /* SOF10 */
        case 0xCB:    /* SOF11 */
        case 0xCD:    /* SOF13 */
        case 0xCE:    /* SOF14 */
        case 0xCF:    /* SOF15 */
        case 0xD9:    /* EOI */
            return TJpgD::JDR_FMT3;    /* Unsuppoted JPEG standard (may be progressive JPEG) */

        default:    /* Unknown segment (comment, exif or etc..) */
            break;
        }
    }
}




/*-----------------------------------------------------------------------*/
/* Start to decompress the JPEG picture                                  */
/*-----------------------------------------------------------------------*/

TJpgD::JRESULT TJpgD::decomp (
    uint32_t (*outfunc)(TJpgD*, void*, TJpgD::JRECT*),    /* RGB output function */
    uint32_t (*linefunc)(TJpgD*,uint32_t,uint32_t),
    uint32_t lineskip                        /* linefunc skip number */
)
{
    uint16_t x, y, mx, my;
    uint16_t rst, rsc;
    TJpgD::JRESULT rc;
    uint8_t workbuf[768];
    uint8_t mcubuf[384];
    uint8_t yidx = 0;

    bayer = (bayer + 1) & 7;

    mx = msx * 8; my = msy * 8;            /* Size of the MCU (pixel) */
    uint16_t lasty = ((height - 1) / my) * my;

    dcv[2] = dcv[1] = dcv[0] = 0;    /* Initialize DC values */
    rst = rsc = 0;

    rc = TJpgD::JDR_OK;
    for (y = 0; y < height; y += my) {        /* Vertical loop of MCUs */
        for (x = 0; x < width; x += mx) {    /* Horizontal loop of MCUs */
            if (nrst && rst++ == nrst) {    /* Process restart interval if enabled */
                rc = restart(this, rsc++);
                if (rc != TJpgD::JDR_OK) return rc;
                rst = 1;
            }
            rc = mcu_load(this, mcubuf, (int32_t*)workbuf);        /* Load an MCU (decompress huffman coded stream and apply IDCT) */
            if (rc != TJpgD::JDR_OK) return rc;
            rc = mcu_output(this, mcubuf, (uint8_t*)workbuf, outfunc, x, y);    /* Output the MCU (color space conversion, scaling and output) */
            if (rc != TJpgD::JDR_OK) return rc;
        }
        if (linefunc && (yidx == lineskip || y == lasty)) {
            linefunc(this, y - yidx * my, yidx * my + ((height < y + my) ? height - y : my));
            yidx = 0;
        } else {
            ++yidx;
        }
    }

    return rc;
}






typedef struct {
    uint8_t* mcubuf = NULL;
    uint_fast16_t x = 0;
    uint_fast16_t y = 0;
    uint_fast8_t h = 0;
    volatile uint_fast8_t queue = false;
} queue_t;

typedef struct {
    TJpgD* jd;
    uint32_t (*outfunc)(TJpgD*, void*, TJpgD::JRECT*);
    uint32_t (*linefunc)(TJpgD*,uint32_t,uint32_t);
    QueueHandle_t sem;
    TaskHandle_t task;
} param_task_output;

static constexpr uint_fast8_t queue_max = 20;
static param_task_output param;
static uint8_t mcubufs[queue_max + 1][384];
static queue_t qwrites[queue_max];
static queue_t qline;
static uint_fast8_t qidx = 0;
static uint_fast8_t mcuidx = 0;

static void task_output(void* arg)
{
    uint8_t workbuf[768];
    param_task_output* p = (param_task_output*)arg;
    queue_t* q;
//Serial.println("task_output start");
    for (;;) {
        if (!xQueueReceive(p->sem, &q, portMAX_DELAY)) continue;
        if (!q) break;
//Serial.printf("task work: X=%d,Y=%d\r\n",q->x,q->y);
        if (q->h == 0) {
            mcu_output(p->jd, q->mcubuf, workbuf, p->outfunc, q->x, q->y);
        } else {
            p->linefunc(p->jd, q->y, q->h);
        }
        q->queue = false;
//Serial.println("task work done");
    }
    vQueueDelete(p->sem);
//Serial.println("task_output end");
    vTaskDelete(NULL);
}

void TJpgD::multitask_begin ()
{
    param.sem = xQueueCreate(queue_max + 1, sizeof(queue_t*));

    xTaskCreatePinnedToCore(task_output, "task_output", 1600, &param, 1, &param.task, 0);
}

void TJpgD::multitask_end ()
{
    queue_t* q = NULL;
    xQueueSend(param.sem, &q, 0);
    vTaskDelay(10);
}

TJpgD::JRESULT TJpgD::decomp_multitask (
    uint32_t (*outfunc)(TJpgD*, void*, TJpgD::JRECT*),    /* RGB output function */
    uint32_t (*linefunc)(TJpgD*,uint32_t,uint32_t),
    uint32_t lineskip                        /* linefunc skip number */
)
{
    uint_fast16_t x, y, mx, my;
    uint_fast16_t rst, rsc;
    TJpgD::JRESULT rc;
    uint8_t workbuf[768];
    uint_fast16_t yidx = 0;


    bayer = (bayer + 1) & 7;

    param.jd = this;
    param.outfunc = outfunc;
    param.linefunc = linefunc;
    queue_t* q = &qwrites[qidx];
    queue_t* ql = &qline;
    queue_t* qtmp = NULL;

    mx = msx * 8; my = msy * 8;            /* Size of the MCU (pixel) */

    dcv[2] = dcv[1] = dcv[0] = 0;    /* Initialize DC values */
    rst = rsc = 0;
    uint_fast16_t lasty = ((height - 1) / my) * my;

    rc = TJpgD::JDR_OK;
    y = 0;
    do {        /* Vertical loop of MCUs */
        x = 0;
        do {    /* Horizontal loop of MCUs */
            if (nrst && rst++ == nrst) {    /* Process restart interval if enabled */
                rc = restart(this, rsc++);
                if (rc != TJpgD::JDR_OK) break;
                rst = 1;
            }
            rc = mcu_load(this, mcubufs[mcuidx], (int32_t*)workbuf);
            if (rc != TJpgD::JDR_OK) break;
            if (!q->queue) {
//mcubufs[mcuidx][0] = 0;
//mcubufs[mcuidx][1] = 0;
                q->mcubuf  = mcubufs[mcuidx];
                q->x = x;
                q->y = y;
                q->queue = true;
                xQueueSend(param.sem, &q, 0);
                mcuidx = (1 + mcuidx) % (queue_max + 1);
                qidx = (1 + qidx) % queue_max;
                q = &qwrites[qidx];
            } else {
                while (ql->queue) taskYIELD();
//mcubufs[mcuidx][0] = 0xFF;
//mcubufs[mcuidx][1] = 0xFF;
                rc = mcu_output(this, mcubufs[mcuidx], workbuf, outfunc, x, y);
            }
        } while ((x += mx) < width);
        if (rc != TJpgD::JDR_OK) break;
        if (linefunc && (yidx == lineskip || y == lasty)) {
            while (ql->queue) taskYIELD();
            while (xQueueReceive(param.sem, &qtmp, 0)) {
//qtmp->mcubuf[0] = 0xFF;
//qtmp->mcubuf[1] = 0xFF;
                mcu_output(this, qtmp->mcubuf, workbuf, outfunc, qtmp->x, qtmp->y);
                qtmp->queue = false;
            }
            ql->h = (y == lasty) ? (yidx * my + height - y) : ((lineskip + 1) * my);
            ql->y = y - yidx * my;
            ql->queue = true;
            xQueueSend(param.sem, &ql, 0);
            yidx = 0;
        } else {
            ++yidx;
        }
    } while ((y += my) < height);
    return rc;
}

tjpgdClass.h

/*----------------------------------------------------------------------------/
/ TJpgDec - Tiny JPEG Decompressor include file               (C)ChaN, 2019
/-----------------------------------------------------------------------------/
/  modify by lovyan03
/ May 29, 2019 Tweak for ArduinoESP32
/----------------------------------------------------------------------------*/

#ifndef _TJPGDEC_H_
#define _TJPGDEC_H_
/*---------------------------------------------------------------------------*/
/* System Configurations */

#define    TJPGD_SZBUF        1426    /* Size of stream input buffer */
#define JD_FORMAT        0    /* Output pixel format 0:RGB888 (3 BYTE/pix), 1:RGB565 (1 WORD/pix) */
#define JD_TBLCLIP        0    /* Use table for saturation (might be a bit faster but increases 1K bytes of code size) */

/*---------------------------------------------------------------------------*/


#if defined(_WIN32)    /* Main development platform */
typedef unsigned char    uint8_t;
typedef unsigned short    uint16_t;
typedef short            int16_t;
typedef unsigned long    uint32_t;
typedef long            int32_t;
#else
#include "stdint.h"
#endif

/* Decompressor object structure */
typedef struct TJpgD TJpgD;
struct TJpgD {
    /* Error code */
    typedef enum {
        JDR_OK = 0,    /* 0: Succeeded */
        JDR_INTR,    /* 1: Interrupted by output function */    
        JDR_INP,    /* 2: Device error or wrong termination of input stream */
        JDR_MEM1,    /* 3: Insufficient memory pool for the image */
        JDR_MEM2,    /* 4: Insufficient stream input buffer */
        JDR_PAR,    /* 5: Parameter error */
        JDR_FMT1,    /* 6: Data format error (may be damaged data) */
        JDR_FMT2,    /* 7: Right format but not supported */
        JDR_FMT3    /* 8: Not supported JPEG standard */
    } JRESULT;

    /* Rectangular structure */
    typedef struct {
        int_fast16_t left, right, top, bottom;
    } JRECT;

    uint8_t* dptr;                /* Current data read ptr */
    uint8_t* dpend;                /* data end ptr */
    uint8_t* inbuf;                /* Bit stream input buffer */
    uint_fast8_t dmsk;            /* Current bit in the current read byte */
    uint_fast8_t bayer;            /* Output bayer gain */
    uint_fast8_t msx, msy;        /* MCU size in unit of block (width, height) */
    uint_fast8_t qtid[3];        /* Quantization table ID of each component */
    int_fast16_t dcv[3];        /* Previous DC element of each component */
    uint_fast16_t nrst;            /* Restart inverval */
    int32_t width, height;        /* Size of the input image (pixel) */
    uint8_t* huffbits[2][2];    /* Huffman bit distribution tables [id][dcac] */
    uint_fast16_t* huffcode[2][2];    /* Huffman code word tables [id][dcac] */
    uint8_t* huffdata[2][2];    /* Huffman decoded data tables [id][dcac] */
    int32_t* qttbl[4];            /* Dequantizer tables [id] */
    void* pool;                    /* Pointer to available memory pool */
    uint_fast16_t sz_pool;            /* Size of momory pool (bytes available) */
    uint32_t (*infunc)(TJpgD*, uint8_t*, uint32_t);/* Pointer to jpeg stream input function */
    void* device;                /* Pointer to I/O device identifiler for the session */


    JRESULT prepare (uint32_t(*)(TJpgD*,uint8_t*,uint32_t), void*);
    JRESULT decomp (uint32_t(*)(TJpgD*,void*,JRECT*), uint32_t(*)(TJpgD*,uint32_t,uint32_t) = 0, uint32_t = 0);
    JRESULT decomp_multitask (uint32_t(*)(TJpgD*,void*,JRECT*), uint32_t(*)(TJpgD*,uint32_t,uint32_t) = 0, uint32_t = 0);
    static void multitask_begin ();
    static void multitask_end ();
};



#endif /* _TJPGDEC */

如果没有找到这个参考工程的话,直接复制这里的代码也是可以的

在这里需要修改MjpegClass.H文件,让他使用TFTe_SPI库

A:把库头文件更换为TFTe_SPI库

 

 B:setup函数的传入参数tft 更改为TFT_eSPI类型,然后下面的使用耶做相应的修改。

 

 C:jpgWriteRow函数里面,写数据入TFTlcd使用下面这个TFTe_SPI库里面的函数。

 

 D:tft变量的声明中变量类型也要修改一下

 

 3,实现视频播放首先定义一些东西,如下所示。

/******播放视频需要*******/
#define MJPEG_FILENAME "/movie/pikachu-dance_240x240_20fps.mjpeg"
#define MJPEG_BUFFER_SIZE (220 * 176 * 2 / 4)
#include "MjpegClass.h"
static MjpegClass mjpeg;

然后播放视频,代码如下,与参考工程的基本差不多,只是由于我在LVGL初始化的时候已经初始化过屏幕,所以不需要在初始化

/******播放视频*******/
void videoplay(){
//  gfx->begin();
//  gfx->fillScreen(BLACK);
  delay(600);
  File vFile = SD.open(MJPEG_FILENAME);
  if (!vFile || vFile.isDirectory()) Serial.println(F("ERROR: Failed to open " MJPEG_FILENAME " file for reading"));
  else{
    uint8_t *mjpeg_buf = (uint8_t *)malloc(MJPEG_BUFFER_SIZE);
    if (!mjpeg_buf) Serial.println(F("mjpeg_buf malloc failed!"));
    else{
      Serial.println(F("MJPEG video start"));
      mjpeg.setup(vFile, mjpeg_buf, tft, true);
      // Read video
      while(mjpeg.readMjpegBuf()) mjpeg.drawJpg();// Play video
      Serial.println(F("MJPEG video end"));
      vFile.close();
    }
  }
}

备注:

采用这种方式播放视频是兼容lvgl的,也就是在播放视频时不去刷新lv_task_handler()时,则就不会出现播放视频刷新屏幕,而lvgl也在刷新屏幕的情况,他们分开刷新屏幕,屏幕显示没有问题。

 

posted @ 2022-03-21 00:58  菜芽caiya  阅读(2778)  评论(0编辑  收藏  举报