面向对象进阶
面向对象进阶
一,面向对象结构与成员
1,1 面向对象结构分析:
如下面的图所示:面向对象整体大致分两块区域:
那么每个大区域又可以分为多个小部分:
class A: company_name = '老男孩教育' # 静态变量(静态字段) __iphone = '1353333xxxx' # 私有静态变量(私有静态字段) def __init__(self,name,age): #普通方法(构造方法) self.name = name #对象属性(普通字段) self.__age = age # 私有对象属性(私有普通字段) def func1(self): # 普通方法 pass def __func(self): #私有方法 print(666) @classmethod # 类方法 def class_func(cls): """ 定义类方法,至少有一个cls参数 """ print('类方法') @staticmethod #静态方法 def static_func(): """ 定义静态方法 ,无默认参数""" print('静态方法') @property # 属性 def prop(self): pass
类有这么多的成员,那么我们先从那些地方研究呢? 可以从私有与公有部分,方法的详细分类两个方向去研究.
1,2面向对象的私有与公有
对于每一个类的成员而言都有两种形式:
- 公有成员,在任何地方都能访问
- 私有成员,只有在类的内部才能方法
私有成员和公有成员的访问限制不同:
静态字段(静态变量)
- 公有静态字段:类可以访问;类内部可以访问;派生类中可以访问
- 私有静态字段:仅类内部可以访问;
公有普通字段
class C: name = "公有静态字段" def func(self): print C.name class D(C): def show(self): print C.name C.name # 类访问 obj = C() obj.func() # 类内部可以访问 obj_son = D() obj_son.show() # 派生类中可以访问
私有静态字段
class C: __name = "私有静态字段" def func(self): print C.__name class D(C): def show(self): print C.__name C.__name # 不可在外部访问 obj = C() obj.__name # 不可在外部访问 obj.func() # 类内部可以访问 obj_son = D() obj_son.show() #不可在派生类中可以访问
普通字段(对象属性)
- 公有普通字段:对象可以访问;类内部可以访问;派生类中可以访问
- 私有普通字段:仅类内部可以访问;
公有普通字段
class C: def __init__(self): self.foo = "公有字段" def func(self): print self.foo # 类内部访问 class D(C): def show(self): print self.foo # 派生类中访问 obj = C() obj.foo # 通过对象访问 obj.func() # 类内部访问 obj_son = D(); obj_son.show() # 派生类中访问
私有静态字段
class C: def __init__(self): self.__foo = "私有字段" def func(self): print self.foo # 类内部访问 class D(C): def show(self): print self.foo # 派生类中访问 obj = C() obj.__foo # 通过对象访问 ==> 错误 obj.func() # 类内部访问 ==> 正确 obj_son = D(); obj_son.show() # 派生类中访问 ==> 错误
方法:
- 公有方法:对象可以访问;类内部可以访问;派生类中可以访问
- 私有方法:仅类内部可以访问;
公有方法
class C: def __init__(self): pass def add(self): print('in C') class D(C): def show(self): print('in D') def func(self): self.show() obj = D() obj.show() # 通过对象访问 obj.func() # 类内部访问 obj.add() # 派生类中访问
私有方法
class C: def __init__(self): pass def __add(self): print('in C') class D(C): def __show(self): print('in D') def func(self): self.__show() obj = D() obj.__show() # 通过不能对象访问 obj.func() # 类内部可以访问 obj.__add() # 派生类中不能访问
总结:
对于这些私有成员来说,他们只能在类的内部使用,不能再类的外部以及派生类中使用.
ps:非要访问私有成员的话,可以通过 对象._类__属性名,但是绝对不允许!!!
为什么可以通过._类__私有成员名访问呢?因为类在创建时,如果遇到了私有成员(包括私有静态字段,私有普通字段,私有方法)它会将其保存在内存时自动在前面加上_类名.
1.3面向对象的成员
1.3.1 字段
字段包括:普通字段和静态字段,他们在定义和使用中有所区别,而最本质的区别是内存中保存的位置不同,
- 普通字段属于对象
- 静态字段属于类
class Province: # 静态字段 country = '中国' def __init__(self, name): # 普通字段 self.name = name # 直接访问普通字段 obj = Province('河北省') print obj.name # 直接访问静态字段 Province.country
上述代码可以看出【普通字段需要通过对象来访问】【静态字段通过类访问】,在使用上可以看出普通字段和静态字段的归属是不同的。其在内容的存储方式类似如下图:
由上图可是:
- 静态字段在内存中只保存一份
- 普通字段在每个对象中都要保存一份
应用场景: 通过类创建对象时,如果每个对象都具有相同的字段,那么就使用静态字段
1.3.2方法
方法包括:普通方法、静态方法和类方法,三种方法在内存中都归属于类,区别在于调用方式不同。
- 普通方法:由对象调用;至少一个self参数;执行普通方法时,自动将调用该方法的对象赋值给self;
- 类方法:由类调用; 至少一个cls参数;执行类方法时,自动将调用该方法的类复制给cls;
- 静态方法:由类调用;无默认参数;
class Foo: def __init__(self, name): self.name = name def ord_func(self): """ 定义普通方法,至少有一个self参数 """ # print self.name print '普通方法' @classmethod def class_func(cls): """ 定义类方法,至少有一个cls参数 """ print '类方法' @staticmethod def static_func(): """ 定义静态方法 ,无默认参数""" print '静态方法' # 调用普通方法 f = Foo() f.ord_func() # 调用类方法 Foo.class_func() # 调用静态方法 Foo.static_func()
相同点:对于所有的方法而言,均属于类(非对象)中,所以,在内存中也只保存一份。
不同点:方法调用者不同、调用方法时自动传入的参数不同。
1.3.2属性
什么是特性property
property是一种特殊的属性,访问它时会执行一段功能(函数)然后返回值
例一:BMI指数(bmi是计算而来的,但很明显它听起来像是一个属性而非方法,如果我们将其做成一个属性,更便于理解) 成人的BMI数值: 过轻:低于18.5 正常:18.5-23.9 过重:24-27 肥胖:28-32 非常肥胖, 高于32 体质指数(BMI)=体重(kg)÷身高^2(m) EX:70kg÷(1.75×1.75)=22.86
class People: def __init__(self,name,weight,height): self.name=name self.weight=weight self.height=height @property def bmi(self): return self.weight / (self.height**2) p1=People('egon',75,1.85) print(p1.bmi)
为什么要用property
将一个类的函数定义成特性以后,对象再去使用的时候obj.name,根本无法察觉自己的name是执行了一个函数然后计算出来的,这种特性的使用方式遵循了统一访问的原则
由于新式类中具有三种访问方式,我们可以根据他们几个属性的访问特点,分别将三个方法定义为对同一个属性:获取、修改、删除
class Goods(object): def __init__(self): # 原价 self.original_price = 100 # 折扣 self.discount = 0.8 @property def price(self): # 实际价格 = 原价 * 折扣 new_price = self.original_price * self.discount return new_price @price.setter def price(self, value): self.original_price = value @price.deltter def price(self, value): del self.original_price obj = Goods() obj.price # 获取商品价格 obj.price = 200 # 修改商品原价 del obj.price # 删除商品原价
二,面相对象的特殊成员及相关内置函数
2.1 isinstance与issubclass
isinstance(obj,cls)检查是否obj是否是类 cls 的对象
class A: pass class B(A): pass abj = B() print(isinstance(abj,B)) #True print(isinstance(abj,A)) #True
issubclass(sub, super)检查sub类是否是 super 类的派生类
class A: pass class B(A): pass abj = B() print(issubclass(B,A)) #True
2.2 反射
反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问、检测和修改它本身状态或行为的一种能力(自省)。这一概念的提出很快引发了计算机科学领域关于应用反射性的研究。它首先被程序语言的设计领域所采用,并在Lisp和面向对象方面取得了成绩。
python面向对象中的反射:通过字符串的形式操作对象相关的属性。python中的一切事物都是对象(都可以使用反射)
四个可以实现自省的函数
下列方法适用于类和对象(一切皆对象,类本身也是一个对象)
class Foo: f = '类的静态变量' def __init__(self,name,age): self.name=name self.age=age def say_hi(self): print('hi,%s'%self.name) obj=Foo('egon',73) #检测是否含有某属性 print(hasattr(obj,'name')) print(hasattr(obj,'say_hi')) #获取属性 n=getattr(obj,'name') print(n) func=getattr(obj,'say_hi') func() print(getattr(obj,'aaaaaaaa','不存在啊')) #报错 #设置属性 setattr(obj,'sb',True) setattr(obj,'show_name',lambda self:self.name+'sb') print(obj.__dict__) print(obj.show_name(obj)) #删除属性 delattr(obj,'age') delattr(obj,'show_name') delattr(obj,'show_name111')#不存在,则报错 print(obj.__dict__)
class Foo(object): staticField = "old boy" def __init__(self): self.name = 'wupeiqi' def func(self): return 'func' @staticmethod def bar(): return 'bar' print getattr(Foo, 'staticField') print getattr(Foo, 'func') print getattr(Foo, 'bar')
import sys def s1(): print 's1' def s2(): print 's2' this_module = sys.modules[__name__] hasattr(this_module, 's1') getattr(this_module, 's2')
#一个模块中的代码 def test(): print('from the test') """ 程序目录: module_test.py index.py 当前文件: index.py """ # 另一个模块中的代码 import module_test as obj #obj.test() print(hasattr(obj,'test')) getattr(obj,'test')()
2.3 __len__
class A: def __init__(self): self.a = 1 self.b = 2 def __len__(self): return len(self.__dict__) a = A() print(len(a))
2.4__hash__
class A: def __init__(self): self.a = 1 self.b = 2 def __hash__(self): return hash(str(self.a)+str(self.b)) a = A() print(hash(a))
2.5 __str__
如果一个类中定义了__str__方法,那么在打印 对象 时,默认输出该方法的返回值。
class A: def __init__(self): pass def __str__(self): return '太白' a = A() print(a) print('%s' % a)
2.6 __repr__
如果一个类中定义了__repr__方法,那么在repr(对象) 时,默认输出该方法的返回值。
class A: def __init__(self): pass def __repr__(self): return '太白' a = A() print(repr(a)) print('%r'%a)
2.7__call__
对象后面加括号,触发执行。
注:构造方法的执行是由创建对象触发的,即:对象 = 类名() ;而对于 __call__ 方法的执行是由对象后加括号触发的,即:对象() 或者 类()()
class Foo: def __init__(self): pass def __call__(self, *args, **kwargs): print('__call__') obj = Foo() # 执行 __init__ obj() # 执行 __call__
2.8__eq__
class A: def __init__(self): self.a = 1 self.b = 2 def __eq__(self,obj): if self.a == obj.a and self.b == obj.b: return True a = A() b = A() print(a == b)
2.9__del__
析构方法,当对象在内存中被释放时,自动触发执行。
注:此方法一般无须定义,因为Python是一门高级语言,程序员在使用时无需关心内存的分配和释放,因为此工作都是交给Python解释器来执行,所以,析构函数的调用是由解释器在进行垃圾回收时自动触发执行的。
2.10__new__
class A: def __init__(self): self.x = 1 print('in init function') def __new__(cls, *args, **kwargs): print('in new function') return object.__new__(A, *args, **kwargs) a = A() print(a.x)
class A: __instance = None def __new__(cls, *args, **kwargs): if cls.__instance is None: obj = object.__new__(cls) cls.__instance = obj return cls.__instance
2.11 item系列
class Foo: def __init__(self,name): self.name=name def __getitem__(self, item): print(self.__dict__[item]) def __setitem__(self, key, value): self.__dict__[key]=value def __delitem__(self, key): print('del obj[key]时,我执行') self.__dict__.pop(key) def __delattr__(self, item): print('del obj.key时,我执行') self.__dict__.pop(item) f1=Foo('sb') f1['age']=18 f1['age1']=19 del f1.age1 del f1['age'] f1['name']='alex' print(f1.__dict__)
posted on 2018-07-26 20:51 cai128118* 阅读(122) 评论(0) 编辑 收藏 举报