gpio_request 原形代码

 http://blog.csdn.net/maopig/article/details/7428561

其原型为 int gpio_request(unsigned gpio, const char *label) 先说说其参数,gpio则为你要申请的哪一个管脚,label则是为其取一个名字。其具体实现如下:

int gpio_request(unsigned gpio, const char *label)   
{   
        struct gpio_desc *desc;//这个自己看源码    
        struct gpio_chip *chip;//这个自己看源码    
        int   status = -EINVAL;   
        unsigned long  flags;  
        spin_lock_irqsave(&gpio_lock, flags);//屏蔽中断   
        if (!gpio_is_valid(gpio))//判断是否有效,也就是参数的取值范围判断    
             goto done;   
        desc = &gpio_desc[gpio];   
//这个是关键gpio_desc为定义的一个全局的数组变量,这个函数的实值也就是,   
//用gpio_desc里面的一个变量来表示数组中的这个元素已经被申请了,而这个变量就是下面会看到的desc->flags。    
chip = desc->chip;//按理说这个这个全局的gpio_desc如果没有初始化的话,这个chip就为空了,随后就直接返回-EINVAL了。    
if (chip == NULL)如果不为空继续往下走   
  goto done;  
if (!try_module_get(chip->owner))   
  goto done;  
/* NOTE:  gpio_request() can be called in early boot,  
  * before IRQs are enabled, for non-sleeping (SOC) GPIOs.  
  */  
if (test_and_set_bit(FLAG_REQUESTED, &desc->flags) == 0) {  
//这里测试并设置flags的第FLAG_REQUESTED位,如果没有被申请就返回该位的原值0,分析到这儿,也差不多满足了我的个人要求。    
  desc_set_label(desc, label ? : "?");   
  status = 0;   
} else {   
  status = -EBUSY;   
  module_put(chip->owner);   
  goto done;   
}  
if (chip->request) {   
  /* chip->request may sleep */   
  spin_unlock_irqrestore(&gpio_lock, flags);   
  status = chip->request(chip, gpio - chip->base);   
  spin_lock_irqsave(&gpio_lock, flags);  
  if (status < 0) {   
   desc_set_label(desc, NULL);   
   module_put(chip->owner);   
   clear_bit(FLAG_REQUESTED, &desc->flags);   
  }   
}  
done:   
if (status)   
  pr_debug("gpio_request: gpio-%d (%s) status %d\n",   
   gpio, label ? : "?", status);   
spin_unlock_irqrestore(&gpio_lock, flags);   
return status;   
}  

  

int gpio_request(unsigned gpio, const char *label)   
{   
        struct gpio_desc *desc;//这个自己看源码   
        struct gpio_chip *chip;//这个自己看源码   
        int   status = -EINVAL;   
        unsigned long  flags;  
        spin_lock_irqsave(&gpio_lock, flags);//屏蔽中断  
        if (!gpio_is_valid(gpio))//判断是否有效,也就是参数的取值范围判断   
             goto done;   
        desc = &gpio_desc[gpio];   
//这个是关键gpio_desc为定义的一个全局的数组变量,这个函数的实值也就是,  
//用gpio_desc里面的一个变量来表示数组中的这个元素已经被申请了,而这个变量就是下面会看到的desc->flags。   
chip = desc->chip;//按理说这个这个全局的gpio_desc如果没有初始化的话,这个chip就为空了,随后就直接返回-EINVAL了。   
if (chip == NULL)如果不为空继续往下走   
  goto done;  
if (!try_module_get(chip->owner))   
  goto done;  
/* NOTE:  gpio_request() can be called in early boot,  
  * before IRQs are enabled, for non-sleeping (SOC) GPIOs.  
  */  
if (test_and_set_bit(FLAG_REQUESTED, &desc->flags) == 0) {  
//这里测试并设置flags的第FLAG_REQUESTED位,如果没有被申请就返回该位的原值0,分析到这儿,也差不多满足了我的个人要求。   
  desc_set_label(desc, label ? : "?");   
  status = 0;   
} else {   
  status = -EBUSY;   
  module_put(chip->owner);   
  goto done;   
}  
if (chip->request) {   
  /* chip->request may sleep */   
  spin_unlock_irqrestore(&gpio_lock, flags);   
  status = chip->request(chip, gpio - chip->base);   
  spin_lock_irqsave(&gpio_lock, flags);  
  if (status < 0) {   
   desc_set_label(desc, NULL);   
   module_put(chip->owner);   
   clear_bit(FLAG_REQUESTED, &desc->flags);   
  }   
}  
done:   
if (status)   
  pr_debug("gpio_request: gpio-%d (%s) status %d\n",   
   gpio, label ? : "?", status);   
spin_unlock_irqrestore(&gpio_lock, flags);   
return status;   
}  

  davinci 平台:

/*  
* TI DaVinci GPIO Support  
*  
* Copyright (c) 2006 David Brownell  
* Copyright (c) 2007, MontaVista Software, Inc. <source@mvista.com>  
*  
* This program is free software; you can redistribute it and/or modify  
* it under the terms of the GNU General Public License as published by  
* the Free Software Foundation; either version 2 of the License, or  
* (at your option) any later version.  
*/   
  
#include <linux/errno.h>    
#include <linux/kernel.h>    
#include <linux/list.h>    
#include <linux/module.h>    
#include <linux/err.h>    
#include <linux/bitops.h>    
  
#include <asm/irq.h>    
#include <asm/io.h>    
#include <asm/hardware/clock.h>    
  
#include <asm/arch/irqs.h>    
#include <asm/arch/hardware.h>    
#include <asm/arch/gpio.h>    
#include <asm/arch/cpu.h>    
  
#include <asm/mach/irq.h>    
  
/*   
该文件实现了gpio的各种应用功能和向内核注册gpio的中断例程等功能。  
用户的驱动程序可调用gpio_request和gpio_free使用或释放该gpio,  
可以调用gpio_direction_input和gpio_direction_output函数设置gpio输入输出方向,  
调用gpio_get_value和gpio_set_value获取设置值。  
*/   
  
static DEFINE_SPINLOCK(gpio_lock);   
  
/* 总共有DAVINCI_N_GPIO(71)个gpio引脚,故使用相应多的bit来记录这些引脚的使用状态 */   
static DECLARE_BITMAP(gpio_in_use, DAVINCI_N_GPIO);   
  
/*  
申请一个gpio,其实就是检查该gpio是否空闲,如果空闲就可以使用并将该gpio相应的bit置位  
(在gpio_in_use中)。  
*/   
int gpio_request(unsigned gpio, const char *tag)   
{   
    if (gpio >= DAVINCI_N_GPIO)   
        return -EINVAL;   
    if (test_and_set_bit(gpio, gpio_in_use))   
        return -EBUSY;   
    return 0;   
}   
EXPORT_SYMBOL(gpio_request);   
  
/*  
释放一个gpio,其实就是清除gpio相应的控制bit位(在gpio_in_use中)。  
*/   
void gpio_free(unsigned gpio)   
{   
    if (gpio >= DAVINCI_N_GPIO)   
        return;   
    clear_bit(gpio, gpio_in_use);   
}   
EXPORT_SYMBOL(gpio_free);   
  
/* 获得gpio_controller结构体指针,gpio_controller结构体是gpio的核心控制单元,里面包含  
gpio的设置和数据寄存器。该结构体和__gpio_to_controller函数在/include/asm-arm/  
arch-davinci/gpio.h中定义,具体如下:  
struct gpio_controller {  
    u32    dir;  
    u32    out_data;  
    u32    set_data;  
    u32    clr_data;  
    u32    in_data;  
    u32    set_rising;  
    u32    clr_rising;  
    u32    set_falling;  
    u32    clr_falling;  
    u32    intstat;  
};  
 
static inline struct gpio_controller *__iomem  
__gpio_to_controller(unsigned gpio)  
{  
    void *__iomem ptr;  
    if (gpio >= DAVINCI_N_GPIO)  
        return NULL;  
 
    if (gpio < 32)  
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x10);  
    else if (gpio < 64)  
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x38);  
    else if (gpio < 96)  
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x60);  
    else  
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x88);  
    return ptr;  
}  
由上面的定义和ti的SPRUE25.pdf手册可以看出,__gpio_to_controller函数返回的是  
gpio_controller结构体到第一个成员dir的虚拟地址。获取了这个结构体指针后,  
便可以控制相应的gpio了。dm644x共有71个gpio,  
所以使用三个gpio_controller结构体控制,关于这个后面会由更详细的分析,  
*/   
/* create a non-inlined version */   
static struct gpio_controller *__iomem gpio2controller(unsigned gpio)   
{   
    return __gpio_to_controller(gpio);   
}   
  
/*   
向某个gpio设置值,0或1。如果向gpio写1,则向set_data寄存器相应的位置1,如果写0,  
则向clr_data寄存器相应的位置1.__gpio_mask函数在gpio.h中定义,定义如下,  
static inline u32 __gpio_mask(unsigned gpio)  
{  
    return 1 << (gpio % 32);  
}  
因为71个引脚由3个结构体控制,第一个控制前32个gpio,第二个控制次32个gpio,  
最后一个控制剩余的7个gpio,故__gpio_mask函数的作用是找到在其相应控制结构体里的偏移数,  
比如gpio34,那么其由第二个结构体控制,在这个机构体里的偏移是3(从0开始算,就是第二位)。  
使用这个函数之前,必须确认该gpio设置成输出模式。  
*/   
/*  
* Assuming the pin is muxed as a gpio output, set its output value.  
*/   
void __gpio_set(unsigned gpio, int value)   
{   
    struct gpio_controller *__iomem g = gpio2controller(gpio);   
    // 设置gpio的值    
    __raw_writel(__gpio_mask(gpio), value ? &g->set_data : &g->clr_data);    
}   
EXPORT_SYMBOL(__gpio_set);   
  
/*   
通过读取in_data寄存器相应该gpio的位来读取gpio的值。  
使用这个函数之前,必须确认该gpio设置成输入模式,否则获得到值不可预料。   
*/   
/*  
* Read the pin's value (works even if it's set up as output);  
* returns zero/nonzero.  
*  
* Note that changes are synched to the GPIO clock, so reading values back  
* right after you've set them may give old values.  
*/   
int __gpio_get(unsigned gpio)   
{   
    struct gpio_controller *__iomem g = gpio2controller(gpio);   
    /* 读取gpio的值,!!的目的是使得返回的值为0或1.*/   
    return !!(__gpio_mask(gpio) & __raw_readl(&g->in_data));       
}                                                                                                                  }   
EXPORT_SYMBOL(__gpio_get);   
  
/*   
通过dir寄存器相应该gpio的位来设置gpio输入输出方向,为0,则设置成输出,为1,则设置出输入。  
该函数是设置成输入,故设置dir寄存器为1.  
 正如应为所说的,必须确认该引脚是作为gpio功能,而不是某个模块到功能,比如spi。通过PINMUX0  
和PINMUX1两个寄存器来设置。  
*/   
/*--------------------------------------------------------------------------*/   
  
/*  
* board setup code *MUST* set PINMUX0 and PINMUX1 as  
* needed, and enable the GPIO clock.  
*/   
int gpio_direction_input(unsigned gpio)   
{   
    struct gpio_controller *__iomem g = gpio2controller(gpio);   
    u32 temp;   
    u32 mask;   
  
    if (!g)   
        return -EINVAL;   
    spin_lock(&gpio_lock);   
    mask = __gpio_mask(gpio);   
    temp = __raw_readl(&g->dir);   
    temp |= mask;    // 设置成1    
    __raw_writel(temp, &g->dir);    // 设置该gpio为输入    
    spin_unlock(&gpio_lock);   
    return 0;   
}   
EXPORT_SYMBOL(gpio_direction_input);   
  
/*  
通过dir寄存器相应该gpio的位来设置gpio输入输出方向,为0,则设置成输出,为1,则设置出输入。  
该函数是设置成输出,故设置dir寄存器为0.  
value参数用于选择gpio设置成输出后该gpio输出的值。  
*/   
int gpio_direction_output(unsigned gpio, int value)   
{   
    struct gpio_controller *__iomem g = gpio2controller(gpio);   
    u32 temp;   
    u32 mask;   
    if (!g)   
        return -EINVAL;   
  
    spin_lock(&gpio_lock);   
    mask = __gpio_mask(gpio);   
    temp = __raw_readl(&g->dir);   
    temp &= ~mask;    // 设置成0     
    //设置该gpio输出值    
    __raw_writel(mask, value ? &g->set_data : &g->clr_data);   
    __raw_writel(temp, &g->dir);    // 设置gpio为输出    
    spin_unlock(&gpio_lock);   
    return 0;   
}   
EXPORT_SYMBOL(gpio_direction_output);   
  
/*  
向gpio设置值,0或1。  
*/   
void gpio_set_value(unsigned gpio, int value)   
{   
    if (__builtin_constant_p(value)) {   
        struct gpio_controller *__iomem g;   
        u32 mask;   
  
        if (gpio >= DAVINCI_N_GPIO)   
            __error_inval_gpio();   
  
        g = __gpio_to_controller(gpio);   
        mask = __gpio_mask(gpio);   
        if (value)   
            __raw_writel(mask, &g->set_data);    // 该gpio输出高    
  
        else   
            __raw_writel(mask, &g->clr_data);    // 该gpio输出低    
  
        return;   
    }   
  
    __gpio_set(gpio, value);   
}   
EXPORT_SYMBOL(gpio_set_value);   
  
/*  
读取gpio的值,0或1.  
*/   
int gpio_get_value(unsigned gpio)   
{   
    struct gpio_controller *__iomem g;   
  
    if (!__builtin_constant_p(gpio))/* 判断该gpio值是否为编译时常数,如果是常数,  
                                     函数返回 1,否则返回 0 */   
        return __gpio_get(gpio);   
  
    if (gpio >= DAVINCI_N_GPIO)   
        return __error_inval_gpio();   
  
    g = __gpio_to_controller(gpio);   
       
    // 读取该gpio的值    
  
    return !!(__gpio_mask(gpio) & __raw_readl(&g->in_data));   
}   
EXPORT_SYMBOL(gpio_get_value);   
  
/*  
* We expect irqs will normally be set up as input pins, but they can also be  
* used as output pins ... which is convenient for testing.  
*  
* NOTE: GPIO0..GPIO7 also have direct INTC hookups, which work in addition  
* to their GPIOBNK0 irq (but with a bit less overhead). But we don't have  
* a good way to hook those up ...  
*  
* All those INTC hookups (GPIO0..GPIO7 plus five IRQ banks) can also  
* serve as EDMA event triggers.  
*/   
  
/*  
禁止相应该irq的gpio的中断。每个gpio都可以作为中断的来源,其中gpio0-gpio7是独立的中断来源,  
也就是分配独立的中断号,其他gpio则共用5个GPIOBNK中断线。其优先级可以在board-evm.c  
中设置(已经介绍过)。在dm644x平台上,中断是电平边缘触发的,禁止中断其实就是既不设置  
上升沿触发,也不设置下降沿触发。  
*/   
static void gpio_irq_disable(unsigned irq)   
{   
    struct gpio_controller *__iomem g = get_irq_chipdata(irq);   
    u32 mask = __gpio_mask(irq_to_gpio(irq));   
  
    __raw_writel(mask, &g->clr_falling);    // 清除下降沿触发    
  
    __raw_writel(mask, &g->clr_rising);        // 清除上升沿触发    
  
}   
  
/*  
中断使能。  
在dm644x平台上,中断是电平边缘触发的,其实就是设置为上升沿或下降沿中断。  
*/   
static void gpio_irq_enable(unsigned irq)   
{   
    struct gpio_controller *__iomem g = get_irq_chipdata(irq);   
    u32 mask = __gpio_mask(irq_to_gpio(irq));   
  
    // 如果先前为下降沿中断,则使能为下降沿中断    
  
    if (irq_desc[irq].status & IRQT_FALLING)   
        __raw_writel(mask, &g->set_falling);   
       
    // 如果先前为上升沿中断,则使能为上升沿中断    
  
    if (irq_desc[irq].status & IRQT_RISING)       
        __raw_writel(mask, &g->set_rising);   
}   
  
/*  
设置中断类型。  
在dm644x平台上,中断有上升沿和下降沿两种触发方式。  
*/   
static int gpio_irq_type(unsigned irq, unsigned trigger)   
{   
    struct gpio_controller *__iomem g = get_irq_chipdata(irq);   
    u32 mask = __gpio_mask(irq_to_gpio(irq));   
  
    if (trigger & ~(IRQT_FALLING | IRQT_RISING))   
        return -EINVAL;   
  
    irq_desc[irq].status &= ~IRQT_BOTHEDGE;   
    irq_desc[irq].status |= trigger;   
  
    __raw_writel(mask, (trigger & IRQT_FALLING)   
         ? &g->set_falling : &g->clr_falling);     // 设置为下降沿触发    
  
    __raw_writel(mask, (trigger & IRQT_RISING)   
         ? &g->set_rising : &g->clr_rising);    // 设置为上升沿触发    
  
    return 0;   
}   
  
/*   
该结构体用于注册到所有irq的中断描述结构体中(struct irqdesc),  
而所有中断描述结构体定义成一个全局数组irq_desc 。  
*/   
static struct irqchip gpio_irqchip = {   
    .unmask        = gpio_irq_enable, /* 用于使能中断,  
                                     在enable_irq()等内核函数中会用到。*/       
    .mask        = gpio_irq_disable,/* 用于禁止中断,  
                                     在disable_irq()等内核函数中会用到。*/   
    .type        = gpio_irq_type, /* 用于设置中断类型,  
                                     在set_irq_type()内核函数中会用到。*/   
};   
  
/*  
该函数将在下面的davinci_gpio_irq_setup中使用,将被注册到五个gpio bank中断的  
irq_desc结构中,目的是处理所有级联的gpio中断。所谓级联的中断, 就是指有n个中断  
共用同一个中断线。  
在dm644x平台中,除了gpio0-gpio7外,其他63个gpio都共用五个gpiobank中断线,在这里,  
gpio0-gpio7也被注册到gpiobank中断线,但实际上并不会使用,因为它们拥有自己的  
中断线。其中,gpio0-gpio15共用IRQ_GPIOBNK0(56)中断线,gpio16-gpio31共用  
IRQ_GPIOBNK1(57)中断线,gpio32-gpio47共用IRQ_GPIOBNK2(58)中断线,  
gpio48-gpio63共用IRQ_GPIOBNK4(59)中断线,gpio64-gpio70共用  
IRQ_GPIOBNK5(60)中断线,  
因为寄存器是32位的,所以实际上只有三组寄存器,第一组包含bank0和bank1,  
也就是gpio0-gpio31,第二组包含bank2和bank3,也就是gpio32-gpio63,  
第三组包含bank4和bank5,也就是gpio64-gpio70,剩余了25个位没有使用。  
*/   
static void   
gpio_irq_handler(unsigned irq, struct irqdesc *desc, struct pt_regs *regs)   
{   
    struct gpio_controller *__iomem g = get_irq_chipdata(irq);   
    u32 mask = 0xffff;   
  
    /* we only care about one bank */   
    // 如果bank中断线是寄数,则说明该中断的中断状态位在INTSTATn寄存器的高16位    
  
    if (irq & 1)   
        mask <<= 16;   
  
    /* temporarily mask (level sensitive) parent IRQ */   
    desc->chip->ack(irq);// 该ack函数会在arch/arm/mach-davinci/irq.c中注册。    
  
    while (1) {   
        u32        status;   
        struct irqdesc    *gpio;   
        int        n;   
        int        res;   
  
        /* ack any irqs */   
        /*gpio中断发生后,硬件会在INTSTATn寄存器中置位相应位,  
         以备程序查询,确定是哪个gpio*/   
        status = __raw_readl(&g->intstat) & mask;    
        if (!status)   
            break;   
        __raw_writel(status, &g->intstat);    // 向该位写1清除    
  
        if (irq & 1)   
            status >>= 16;   
  
        /* now demux them to the right lowlevel handler */   
        // 从下面的davinci_gpio_irq_setup函数可以看出来以下程序的运作。    
  
        n = (int)get_irq_data(irq);    // 获取该bank对应的第一个gpio号    
  
        gpio = &irq_desc[n];    // 获取该bank第一个gpio号对应的中断描述符    
  
        while (status) {    // 该bank可能有多个gpio发生了中断    
  
            res = ffs(status);    // 获取第一个发生了中断的位(1-32)    
  
            n += res;    /* 获得该gpio的中断线(系统实际上只有64(0-63)个中断线,  
                        但那些共用的gpio的中断也有自己的断描述符和中断线(从64开始),  
                        仅仅是为了管理,不能通过request_irq()函数来申请。*/   
            gpio += res;    //     获得该gpio的中断描述符    
  
               
            /* 调用下面注册的do_simple_IRQ例程  
             其又会调用用户通过request_irq()  
             注册的中断例程  
            */   
            desc_handle_irq(n - 1, gpio - 1, regs);       
            status >>= res;           
        }   
    }   
    desc->chip->unmask(irq);    // 打开该irq中断线    
  
    /* now it may re-trigger */   
}   
  
/*  
* NOTE: for suspend/resume, probably best to make a sysdev (and class)  
* with its suspend/resume calls hooking into the results of the set_wake()  
* calls ... so if no gpios are wakeup events the clock can be disabled,  
* with outputs left at previously set levels, and so that VDD3P3V.IOPWDN0  
* can be set appropriately for GPIOV33 pins.  
*/   
/*  
注册gpio中断例程到内核中,并初始化了一些寄存器。  
该函数将会被board_evm.c(其浅析已经发表)中的evm_init()函数调用。具体调用过程如下:  
start_kernel()-->setup_arch()-->init_machine = mdesc->init_machine  
(init_machine是个全局函数指针变量,其指向的就是已经注册到机器描述符里evm_init());  
调用函数指针init_machine()的例程是customize_machine(),其定义为  
arch_initcall(customize_machine),所以,接下来的调用过程是:  
start_kernel()-->do_basic_setup()-->do_initcalls()-->customize_machine()-->  
init_machine()(也就是evm_init())-->davinci_gpio_irq_setup。  
从上可以看出经历了两个过程,才调用davinci_gpio_irq_setup例程来初始化gpio中断。  
*/   
int __init davinci_gpio_irq_setup(void)   
{   
    unsigned    gpio, irq, bank, banks;   
    struct clk    *clk;   
  
    clk = clk_get(NULL, "gpio");    // 获取时钟    
  
    if (IS_ERR(clk)) {   
        printk(KERN_ERR "Error %ld getting gpio clock?\n",   
         PTR_ERR(clk));   
        return 0;   
    }   
  
    clk_enable(clk);    // 使能gpio时钟并打开该模块电源    
  
  
    for (gpio = 0, irq = gpio_to_irq(0), bank = (cpu_is_davinci_dm355() ?   
     IRQ_DM355_GPIOBNK0 : (cpu_is_davinci_dm6467() ?   
     IRQ_DM646X_GPIOBNK0 : IRQ_GPIOBNK0));    // dm644x的IRQ_GPIOBNK0(56)    
  
     gpio < DAVINCI_N_GPIO; bank++) {    // dm644x的DAVINCI_N_GPIO(71)    
  
        struct gpio_controller    *__iomem g = gpio2controller(gpio);   
        unsigned        i;   
  
        // 关该bank所有gpio的中断    
  
        __raw_writel(~0, &g->clr_falling);   
        __raw_writel(~0, &g->clr_rising);   
  
        /* set up all irqs in this bank */   
        // 同一个bank的所有gpio共用一个中断例程gpio_irq_handler    
  
        set_irq_chained_handler(bank, gpio_irq_handler);   
        set_irq_chipdata(bank, g);   
        set_irq_data(bank, (void *)irq);   
  
        for (i = 0; i < 16 && gpio < DAVINCI_N_GPIO;   
         i++, irq++, gpio++) {   
            set_irq_chip(irq, &gpio_irqchip);    /* 注册用于gpio中断禁止、设能  
                                                 和类型选择的回调例程 */   
            set_irq_chipdata(irq, g);            // 保存控制结构体(寄存器)的地址    
  
            set_irq_handler(irq, do_simple_IRQ);/* 为每个gpio中断设置同一个中  
                                                    断例程do_simple_IRQ*/   
            set_irq_flags(irq, IRQF_VALID);        // fiq中断有效    
  
        }   
    }   
/*      
一个共用bank中断线的gpio中断发生后的大致的流程是:  
--> gpio_irq_handler --> do_simple_IRQ --> __do_irq -->   
action->handler(用户使用request_irq()注册的中断例程)  
*/   
    /* BINTEN -- per-bank interrupt enable. genirq would also let these  
     * bits be set/cleared dynamically.  
     */   
    if (cpu_is_davinci_dm355())   
        banks = 0x3f;   
    else   
        banks = 0x1f;   
       
    // 向BINTEN寄存器写入0x1f(共5个位,每个位控制1个bank),打开所有的bank中断    
  
    __raw_writel(banks, (void *__iomem)   
         IO_ADDRESS(DAVINCI_GPIO_BASE + 0x08));   
  
    printk(KERN_INFO "DaVinci: %d gpio irqs\n", irq - gpio_to_irq(0));   
  
    return 0;   
}   
  
   
  
  
gpio.h   
  
  
/*  
* TI DaVinci GPIO Support  
*  
* Copyright (c) 2006 David Brownell  
* Copyright (c) 2007, MontaVista Software, Inc. <source@mvista.com>  
*  
* This program is free software; you can redistribute it and/or modify  
* it under the terms of the GNU General Public License as published by  
* the Free Software Foundation; either version 2 of the License, or  
* (at your option) any later version.  
*/   
  
#ifndef    __DAVINCI_GPIO_H    
#define    __DAVINCI_GPIO_H    
  
/*  
* basic gpio routines  
*  
* board-specific init should be done by arch/.../.../board-XXX.c (maybe  
* initializing banks together) rather than boot loaders; kexec() won't  
* go through boot loaders.  
*  
* the gpio clock will be turned on when gpios are used, and you may also  
* need to pay attention to PINMUX0 and PINMUX1 to be sure those pins are  
* used as gpios, not with other peripherals.  
*  
* GPIOs are numbered 0..(DAVINCI_N_GPIO-1). For documentation, and maybe  
* for later updates, code should write GPIO(N) or:  
* - GPIOV18(N) for 1.8V pins, N in 0..53; same as GPIO(0)..GPIO(53)  
* - GPIOV33(N) for 3.3V pins, N in 0..17; same as GPIO(54)..GPIO(70)  
*  
* For GPIO IRQs use gpio_to_irq(GPIO(N)) or gpio_to_irq(GPIOV33(N)) etc  
* for now, that's != GPIO(N)  
*/   
#define    GPIO(X)        (X)        /* 0 <= X <= 70 */    
#define    GPIOV18(X)    (X)        /* 1.8V i/o; 0 <= X <= 53 */    
#define    GPIOV33(X)    ((X)+54)    /* 3.3V i/o; 0 <= X <= 17 */    
  
/*   
寄存器都是32位到,每位对应一个gpio。  
*/   
struct gpio_controller {   
    u32    dir;            // gpio方向设置寄存器    
  
    u32    out_data;        // gpio设置为输出时,表示输出状态(0或1)    
  
    u32    set_data;        // gpio设置为输出时,用于输出高电平    
  
    u32    clr_data;        // gpio设置为输出时,用于输出低电平    
  
    u32    in_data;        // gpio设置为输入时,用于读取输入值    
  
    u32    set_rising;        // gpio中断上升沿触发设置    
  
    u32    clr_rising;        // gpio中断上升沿触发清除    
  
    u32    set_falling;    // gpio中断下降沿触发设置    
  
    u32    clr_falling;    // gpio中断下降沿触发清除    
  
    u32    intstat;        // gpio中断状态位,由硬件设置,可读取,写1时清除。    
  
};   
  
/* The __gpio_to_controller() and __gpio_mask() functions inline to constants  
* with constant parameters; or in outlined code they execute at runtime.  
*  
* You'd access the controller directly when reading or writing more than  
* one gpio value at a time, and to support wired logic where the value  
* being driven by the cpu need not match the value read back.  
*  
* These are NOT part of the cross-platform GPIO interface  
*/   
static inline struct gpio_controller *__iomem   
__gpio_to_controller(unsigned gpio)   
{   
    void *__iomem ptr;   
  
    if (gpio >= DAVINCI_N_GPIO)   
        return NULL;   
  
    if (gpio < 32)   
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x10);   
    else if (gpio < 64)   
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x38);   
    else if (gpio < 96)   
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x60);   
    else   
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x88);   
  
    return ptr;   
}   
  
static inline u32 __gpio_mask(unsigned gpio)   
{   
    return 1 << (gpio % 32);   
}   
  
/* The get/set/clear functions will inline when called with constant  
* parameters, for low-overhead bitbanging. Illegal constant parameters  
* cause link-time errors.  
*  
* Otherwise, calls with variable parameters use outlined functions.  
*/   
extern int __error_inval_gpio(void);   
  
extern void __gpio_set(unsigned gpio, int value);   
extern int __gpio_get(unsigned gpio);   
  
/* Returns zero or nonzero; works for gpios configured as inputs OR  
* as outputs.  
*  
* NOTE: changes in reported values are synchronized to the GPIO clock.  
* This is most easily seen after calling gpio_set_value() and then immediatly  
* gpio_get_value(), where the gpio_get_value() would return the old value  
* until the GPIO clock ticks and the new value gets latched.  
*/   
extern int gpio_get_value(unsigned gpio);   
extern void gpio_set_value(unsigned gpio, int value);   
  
  
/* powerup default direction is IN */   
extern int gpio_direction_input(unsigned gpio);   
extern int gpio_direction_output(unsigned gpio, int value);   
  
#include <asm-generic/gpio.h>    /* cansleep wrappers */    
  
extern int gpio_request(unsigned gpio, const char *tag);   
extern void gpio_free(unsigned gpio);   
  
static inline int gpio_to_irq(unsigned gpio)   
{   
    return DAVINCI_N_AINTC_IRQ + gpio;   
}   
  
static inline int irq_to_gpio(unsigned irq)   
{   
    return irq - DAVINCI_N_AINTC_IRQ;   
}   
  
#endif                /* __DAVINCI_GPIO_H */   
   

  

/*  
* TI DaVinci GPIO Support  
*  
* Copyright (c) 2006 David Brownell  
* Copyright (c) 2007, MontaVista Software, Inc. <source@mvista.com>  
*  
* This program is free software; you can redistribute it and/or modify  
* it under the terms of the GNU General Public License as published by  
* the Free Software Foundation; either version 2 of the License, or  
* (at your option) any later version.  
*/   
  
#include <linux/errno.h>   
#include <linux/kernel.h>   
#include <linux/list.h>   
#include <linux/module.h>   
#include <linux/err.h>   
#include <linux/bitops.h>   
  
#include <asm/irq.h>   
#include <asm/io.h>   
#include <asm/hardware/clock.h>   
  
#include <asm/arch/irqs.h>   
#include <asm/arch/hardware.h>   
#include <asm/arch/gpio.h>   
#include <asm/arch/cpu.h>   
  
#include <asm/mach/irq.h>   
  
/*   
该文件实现了gpio的各种应用功能和向内核注册gpio的中断例程等功能。  
用户的驱动程序可调用gpio_request和gpio_free使用或释放该gpio,  
可以调用gpio_direction_input和gpio_direction_output函数设置gpio输入输出方向,  
调用gpio_get_value和gpio_set_value获取设置值。  
*/   
  
static DEFINE_SPINLOCK(gpio_lock);   
  
/* 总共有DAVINCI_N_GPIO(71)个gpio引脚,故使用相应多的bit来记录这些引脚的使用状态 */   
static DECLARE_BITMAP(gpio_in_use, DAVINCI_N_GPIO);   
  
/*  
申请一个gpio,其实就是检查该gpio是否空闲,如果空闲就可以使用并将该gpio相应的bit置位  
(在gpio_in_use中)。  
*/   
int gpio_request(unsigned gpio, const char *tag)   
{   
    if (gpio >= DAVINCI_N_GPIO)   
        return -EINVAL;   
    if (test_and_set_bit(gpio, gpio_in_use))   
        return -EBUSY;   
    return 0;   
}   
EXPORT_SYMBOL(gpio_request);   
  
/*  
释放一个gpio,其实就是清除gpio相应的控制bit位(在gpio_in_use中)。  
*/   
void gpio_free(unsigned gpio)   
{   
    if (gpio >= DAVINCI_N_GPIO)   
        return;   
    clear_bit(gpio, gpio_in_use);   
}   
EXPORT_SYMBOL(gpio_free);   
  
/* 获得gpio_controller结构体指针,gpio_controller结构体是gpio的核心控制单元,里面包含  
gpio的设置和数据寄存器。该结构体和__gpio_to_controller函数在/include/asm-arm/  
arch-davinci/gpio.h中定义,具体如下:  
struct gpio_controller {  
    u32    dir;  
    u32    out_data;  
    u32    set_data;  
    u32    clr_data;  
    u32    in_data;  
    u32    set_rising;  
    u32    clr_rising;  
    u32    set_falling;  
    u32    clr_falling;  
    u32    intstat;  
};  
 
static inline struct gpio_controller *__iomem  
__gpio_to_controller(unsigned gpio)  
{  
    void *__iomem ptr;  
    if (gpio >= DAVINCI_N_GPIO)  
        return NULL;  
 
    if (gpio < 32)  
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x10);  
    else if (gpio < 64)  
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x38);  
    else if (gpio < 96)  
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x60);  
    else  
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x88);  
    return ptr;  
}  
由上面的定义和ti的SPRUE25.pdf手册可以看出,__gpio_to_controller函数返回的是  
gpio_controller结构体到第一个成员dir的虚拟地址。获取了这个结构体指针后,  
便可以控制相应的gpio了。dm644x共有71个gpio,  
所以使用三个gpio_controller结构体控制,关于这个后面会由更详细的分析,  
*/   
/* create a non-inlined version */   
static struct gpio_controller *__iomem gpio2controller(unsigned gpio)   
{   
    return __gpio_to_controller(gpio);   
}   
  
/*   
向某个gpio设置值,0或1。如果向gpio写1,则向set_data寄存器相应的位置1,如果写0,  
则向clr_data寄存器相应的位置1.__gpio_mask函数在gpio.h中定义,定义如下,  
static inline u32 __gpio_mask(unsigned gpio)  
{  
    return 1 << (gpio % 32);  
}  
因为71个引脚由3个结构体控制,第一个控制前32个gpio,第二个控制次32个gpio,  
最后一个控制剩余的7个gpio,故__gpio_mask函数的作用是找到在其相应控制结构体里的偏移数,  
比如gpio34,那么其由第二个结构体控制,在这个机构体里的偏移是3(从0开始算,就是第二位)。  
使用这个函数之前,必须确认该gpio设置成输出模式。  
*/   
/*  
* Assuming the pin is muxed as a gpio output, set its output value.  
*/   
void __gpio_set(unsigned gpio, int value)   
{   
    struct gpio_controller *__iomem g = gpio2controller(gpio);   
    // 设置gpio的值   
    __raw_writel(__gpio_mask(gpio), value ? &g->set_data : &g->clr_data);    
}   
EXPORT_SYMBOL(__gpio_set);   
  
/*   
通过读取in_data寄存器相应该gpio的位来读取gpio的值。  
使用这个函数之前,必须确认该gpio设置成输入模式,否则获得到值不可预料。   
*/   
/*  
* Read the pin's value (works even if it's set up as output);  
* returns zero/nonzero.  
*  
* Note that changes are synched to the GPIO clock, so reading values back  
* right after you've set them may give old values.  
*/   
int __gpio_get(unsigned gpio)   
{   
    struct gpio_controller *__iomem g = gpio2controller(gpio);   
    /* 读取gpio的值,!!的目的是使得返回的值为0或1.*/   
    return !!(__gpio_mask(gpio) & __raw_readl(&g->in_data));       
}                                                                                                                  }   
EXPORT_SYMBOL(__gpio_get);   
  
/*   
通过dir寄存器相应该gpio的位来设置gpio输入输出方向,为0,则设置成输出,为1,则设置出输入。  
该函数是设置成输入,故设置dir寄存器为1.  
 正如应为所说的,必须确认该引脚是作为gpio功能,而不是某个模块到功能,比如spi。通过PINMUX0  
和PINMUX1两个寄存器来设置。  
*/   
/*--------------------------------------------------------------------------*/   
  
/*  
* board setup code *MUST* set PINMUX0 and PINMUX1 as  
* needed, and enable the GPIO clock.  
*/   
int gpio_direction_input(unsigned gpio)   
{   
    struct gpio_controller *__iomem g = gpio2controller(gpio);   
    u32 temp;   
    u32 mask;   
  
    if (!g)   
        return -EINVAL;   
    spin_lock(&gpio_lock);   
    mask = __gpio_mask(gpio);   
    temp = __raw_readl(&g->dir);   
    temp |= mask;    // 设置成1   
    __raw_writel(temp, &g->dir);    // 设置该gpio为输入   
    spin_unlock(&gpio_lock);   
    return 0;   
}   
EXPORT_SYMBOL(gpio_direction_input);   
  
/*  
通过dir寄存器相应该gpio的位来设置gpio输入输出方向,为0,则设置成输出,为1,则设置出输入。  
该函数是设置成输出,故设置dir寄存器为0.  
value参数用于选择gpio设置成输出后该gpio输出的值。  
*/   
int gpio_direction_output(unsigned gpio, int value)   
{   
    struct gpio_controller *__iomem g = gpio2controller(gpio);   
    u32 temp;   
    u32 mask;   
    if (!g)   
        return -EINVAL;   
  
    spin_lock(&gpio_lock);   
    mask = __gpio_mask(gpio);   
    temp = __raw_readl(&g->dir);   
    temp &= ~mask;    // 设置成0    
    //设置该gpio输出值   
    __raw_writel(mask, value ? &g->set_data : &g->clr_data);   
    __raw_writel(temp, &g->dir);    // 设置gpio为输出   
    spin_unlock(&gpio_lock);   
    return 0;   
}   
EXPORT_SYMBOL(gpio_direction_output);   
  
/*  
向gpio设置值,0或1。  
*/   
void gpio_set_value(unsigned gpio, int value)   
{   
    if (__builtin_constant_p(value)) {   
        struct gpio_controller *__iomem g;   
        u32 mask;   
  
        if (gpio >= DAVINCI_N_GPIO)   
            __error_inval_gpio();   
  
        g = __gpio_to_controller(gpio);   
        mask = __gpio_mask(gpio);   
        if (value)   
            __raw_writel(mask, &g->set_data);    // 该gpio输出高   
  
        else   
            __raw_writel(mask, &g->clr_data);    // 该gpio输出低   
  
        return;   
    }   
  
    __gpio_set(gpio, value);   
}   
EXPORT_SYMBOL(gpio_set_value);   
  
/*  
读取gpio的值,0或1.  
*/   
int gpio_get_value(unsigned gpio)   
{   
    struct gpio_controller *__iomem g;   
  
    if (!__builtin_constant_p(gpio))/* 判断该gpio值是否为编译时常数,如果是常数,  
                                     函数返回 1,否则返回 0 */   
        return __gpio_get(gpio);   
  
    if (gpio >= DAVINCI_N_GPIO)   
        return __error_inval_gpio();   
  
    g = __gpio_to_controller(gpio);   
       
    // 读取该gpio的值   
  
    return !!(__gpio_mask(gpio) & __raw_readl(&g->in_data));   
}   
EXPORT_SYMBOL(gpio_get_value);   
  
/*  
* We expect irqs will normally be set up as input pins, but they can also be  
* used as output pins ... which is convenient for testing.  
*  
* NOTE: GPIO0..GPIO7 also have direct INTC hookups, which work in addition  
* to their GPIOBNK0 irq (but with a bit less overhead). But we don't have  
* a good way to hook those up ...  
*  
* All those INTC hookups (GPIO0..GPIO7 plus five IRQ banks) can also  
* serve as EDMA event triggers.  
*/   
  
/*  
禁止相应该irq的gpio的中断。每个gpio都可以作为中断的来源,其中gpio0-gpio7是独立的中断来源,  
也就是分配独立的中断号,其他gpio则共用5个GPIOBNK中断线。其优先级可以在board-evm.c  
中设置(已经介绍过)。在dm644x平台上,中断是电平边缘触发的,禁止中断其实就是既不设置  
上升沿触发,也不设置下降沿触发。  
*/   
static void gpio_irq_disable(unsigned irq)   
{   
    struct gpio_controller *__iomem g = get_irq_chipdata(irq);   
    u32 mask = __gpio_mask(irq_to_gpio(irq));   
  
    __raw_writel(mask, &g->clr_falling);    // 清除下降沿触发   
  
    __raw_writel(mask, &g->clr_rising);        // 清除上升沿触发   
  
}   
  
/*  
中断使能。  
在dm644x平台上,中断是电平边缘触发的,其实就是设置为上升沿或下降沿中断。  
*/   
static void gpio_irq_enable(unsigned irq)   
{   
    struct gpio_controller *__iomem g = get_irq_chipdata(irq);   
    u32 mask = __gpio_mask(irq_to_gpio(irq));   
  
    // 如果先前为下降沿中断,则使能为下降沿中断   
  
    if (irq_desc[irq].status & IRQT_FALLING)   
        __raw_writel(mask, &g->set_falling);   
       
    // 如果先前为上升沿中断,则使能为上升沿中断   
  
    if (irq_desc[irq].status & IRQT_RISING)       
        __raw_writel(mask, &g->set_rising);   
}   
  
/*  
设置中断类型。  
在dm644x平台上,中断有上升沿和下降沿两种触发方式。  
*/   
static int gpio_irq_type(unsigned irq, unsigned trigger)   
{   
    struct gpio_controller *__iomem g = get_irq_chipdata(irq);   
    u32 mask = __gpio_mask(irq_to_gpio(irq));   
  
    if (trigger & ~(IRQT_FALLING | IRQT_RISING))   
        return -EINVAL;   
  
    irq_desc[irq].status &= ~IRQT_BOTHEDGE;   
    irq_desc[irq].status |= trigger;   
  
    __raw_writel(mask, (trigger & IRQT_FALLING)   
         ? &g->set_falling : &g->clr_falling);     // 设置为下降沿触发   
  
    __raw_writel(mask, (trigger & IRQT_RISING)   
         ? &g->set_rising : &g->clr_rising);    // 设置为上升沿触发   
  
    return 0;   
}   
  
/*   
该结构体用于注册到所有irq的中断描述结构体中(struct irqdesc),  
而所有中断描述结构体定义成一个全局数组irq_desc 。  
*/   
static struct irqchip gpio_irqchip = {   
    .unmask        = gpio_irq_enable, /* 用于使能中断,  
                                     在enable_irq()等内核函数中会用到。*/       
    .mask        = gpio_irq_disable,/* 用于禁止中断,  
                                     在disable_irq()等内核函数中会用到。*/   
    .type        = gpio_irq_type, /* 用于设置中断类型,  
                                     在set_irq_type()内核函数中会用到。*/   
};   
  
/*  
该函数将在下面的davinci_gpio_irq_setup中使用,将被注册到五个gpio bank中断的  
irq_desc结构中,目的是处理所有级联的gpio中断。所谓级联的中断, 就是指有n个中断  
共用同一个中断线。  
在dm644x平台中,除了gpio0-gpio7外,其他63个gpio都共用五个gpiobank中断线,在这里,  
gpio0-gpio7也被注册到gpiobank中断线,但实际上并不会使用,因为它们拥有自己的  
中断线。其中,gpio0-gpio15共用IRQ_GPIOBNK0(56)中断线,gpio16-gpio31共用  
IRQ_GPIOBNK1(57)中断线,gpio32-gpio47共用IRQ_GPIOBNK2(58)中断线,  
gpio48-gpio63共用IRQ_GPIOBNK4(59)中断线,gpio64-gpio70共用  
IRQ_GPIOBNK5(60)中断线,  
因为寄存器是32位的,所以实际上只有三组寄存器,第一组包含bank0和bank1,  
也就是gpio0-gpio31,第二组包含bank2和bank3,也就是gpio32-gpio63,  
第三组包含bank4和bank5,也就是gpio64-gpio70,剩余了25个位没有使用。  
*/   
static void   
gpio_irq_handler(unsigned irq, struct irqdesc *desc, struct pt_regs *regs)   
{   
    struct gpio_controller *__iomem g = get_irq_chipdata(irq);   
    u32 mask = 0xffff;   
  
    /* we only care about one bank */   
    // 如果bank中断线是寄数,则说明该中断的中断状态位在INTSTATn寄存器的高16位   
  
    if (irq & 1)   
        mask <<= 16;   
  
    /* temporarily mask (level sensitive) parent IRQ */   
    desc->chip->ack(irq);// 该ack函数会在arch/arm/mach-davinci/irq.c中注册。   
  
    while (1) {   
        u32        status;   
        struct irqdesc    *gpio;   
        int        n;   
        int        res;   
  
        /* ack any irqs */   
        /*gpio中断发生后,硬件会在INTSTATn寄存器中置位相应位,  
         以备程序查询,确定是哪个gpio*/   
        status = __raw_readl(&g->intstat) & mask;    
        if (!status)   
            break;   
        __raw_writel(status, &g->intstat);    // 向该位写1清除   
  
        if (irq & 1)   
            status >>= 16;   
  
        /* now demux them to the right lowlevel handler */   
        // 从下面的davinci_gpio_irq_setup函数可以看出来以下程序的运作。   
  
        n = (int)get_irq_data(irq);    // 获取该bank对应的第一个gpio号   
  
        gpio = &irq_desc[n];    // 获取该bank第一个gpio号对应的中断描述符   
  
        while (status) {    // 该bank可能有多个gpio发生了中断   
  
            res = ffs(status);    // 获取第一个发生了中断的位(1-32)   
  
            n += res;    /* 获得该gpio的中断线(系统实际上只有64(0-63)个中断线,  
                        但那些共用的gpio的中断也有自己的断描述符和中断线(从64开始),  
                        仅仅是为了管理,不能通过request_irq()函数来申请。*/   
            gpio += res;    //     获得该gpio的中断描述符   
  
               
            /* 调用下面注册的do_simple_IRQ例程  
             其又会调用用户通过request_irq()  
             注册的中断例程  
            */   
            desc_handle_irq(n - 1, gpio - 1, regs);       
            status >>= res;           
        }   
    }   
    desc->chip->unmask(irq);    // 打开该irq中断线   
  
    /* now it may re-trigger */   
}   
  
/*  
* NOTE: for suspend/resume, probably best to make a sysdev (and class)  
* with its suspend/resume calls hooking into the results of the set_wake()  
* calls ... so if no gpios are wakeup events the clock can be disabled,  
* with outputs left at previously set levels, and so that VDD3P3V.IOPWDN0  
* can be set appropriately for GPIOV33 pins.  
*/   
/*  
注册gpio中断例程到内核中,并初始化了一些寄存器。  
该函数将会被board_evm.c(其浅析已经发表)中的evm_init()函数调用。具体调用过程如下:  
start_kernel()-->setup_arch()-->init_machine = mdesc->init_machine  
(init_machine是个全局函数指针变量,其指向的就是已经注册到机器描述符里evm_init());  
调用函数指针init_machine()的例程是customize_machine(),其定义为  
arch_initcall(customize_machine),所以,接下来的调用过程是:  
start_kernel()-->do_basic_setup()-->do_initcalls()-->customize_machine()-->  
init_machine()(也就是evm_init())-->davinci_gpio_irq_setup。  
从上可以看出经历了两个过程,才调用davinci_gpio_irq_setup例程来初始化gpio中断。  
*/   
int __init davinci_gpio_irq_setup(void)   
{   
    unsigned    gpio, irq, bank, banks;   
    struct clk    *clk;   
  
    clk = clk_get(NULL, "gpio");    // 获取时钟   
  
    if (IS_ERR(clk)) {   
        printk(KERN_ERR "Error %ld getting gpio clock?\n",   
         PTR_ERR(clk));   
        return 0;   
    }   
  
    clk_enable(clk);    // 使能gpio时钟并打开该模块电源   
  
  
    for (gpio = 0, irq = gpio_to_irq(0), bank = (cpu_is_davinci_dm355() ?   
     IRQ_DM355_GPIOBNK0 : (cpu_is_davinci_dm6467() ?   
     IRQ_DM646X_GPIOBNK0 : IRQ_GPIOBNK0));    // dm644x的IRQ_GPIOBNK0(56)   
  
     gpio < DAVINCI_N_GPIO; bank++) {    // dm644x的DAVINCI_N_GPIO(71)   
  
        struct gpio_controller    *__iomem g = gpio2controller(gpio);   
        unsigned        i;   
  
        // 关该bank所有gpio的中断   
  
        __raw_writel(~0, &g->clr_falling);   
        __raw_writel(~0, &g->clr_rising);   
  
        /* set up all irqs in this bank */   
        // 同一个bank的所有gpio共用一个中断例程gpio_irq_handler   
  
        set_irq_chained_handler(bank, gpio_irq_handler);   
        set_irq_chipdata(bank, g);   
        set_irq_data(bank, (void *)irq);   
  
        for (i = 0; i < 16 && gpio < DAVINCI_N_GPIO;   
         i++, irq++, gpio++) {   
            set_irq_chip(irq, &gpio_irqchip);    /* 注册用于gpio中断禁止、设能  
                                                 和类型选择的回调例程 */   
            set_irq_chipdata(irq, g);            // 保存控制结构体(寄存器)的地址   
  
            set_irq_handler(irq, do_simple_IRQ);/* 为每个gpio中断设置同一个中  
                                                    断例程do_simple_IRQ*/   
            set_irq_flags(irq, IRQF_VALID);        // fiq中断有效   
  
        }   
    }   
/*      
一个共用bank中断线的gpio中断发生后的大致的流程是:  
--> gpio_irq_handler --> do_simple_IRQ --> __do_irq -->   
action->handler(用户使用request_irq()注册的中断例程)  
*/   
    /* BINTEN -- per-bank interrupt enable. genirq would also let these  
     * bits be set/cleared dynamically.  
     */   
    if (cpu_is_davinci_dm355())   
        banks = 0x3f;   
    else   
        banks = 0x1f;   
       
    // 向BINTEN寄存器写入0x1f(共5个位,每个位控制1个bank),打开所有的bank中断   
  
    __raw_writel(banks, (void *__iomem)   
         IO_ADDRESS(DAVINCI_GPIO_BASE + 0x08));   
  
    printk(KERN_INFO "DaVinci: %d gpio irqs\n", irq - gpio_to_irq(0));   
  
    return 0;   
}   
  
   
  
  
gpio.h   
  
  
/*  
* TI DaVinci GPIO Support  
*  
* Copyright (c) 2006 David Brownell  
* Copyright (c) 2007, MontaVista Software, Inc. <source@mvista.com>  
*  
* This program is free software; you can redistribute it and/or modify  
* it under the terms of the GNU General Public License as published by  
* the Free Software Foundation; either version 2 of the License, or  
* (at your option) any later version.  
*/   
  
#ifndef    __DAVINCI_GPIO_H   
#define    __DAVINCI_GPIO_H   
  
/*  
* basic gpio routines  
*  
* board-specific init should be done by arch/.../.../board-XXX.c (maybe  
* initializing banks together) rather than boot loaders; kexec() won't  
* go through boot loaders.  
*  
* the gpio clock will be turned on when gpios are used, and you may also  
* need to pay attention to PINMUX0 and PINMUX1 to be sure those pins are  
* used as gpios, not with other peripherals.  
*  
* GPIOs are numbered 0..(DAVINCI_N_GPIO-1). For documentation, and maybe  
* for later updates, code should write GPIO(N) or:  
* - GPIOV18(N) for 1.8V pins, N in 0..53; same as GPIO(0)..GPIO(53)  
* - GPIOV33(N) for 3.3V pins, N in 0..17; same as GPIO(54)..GPIO(70)  
*  
* For GPIO IRQs use gpio_to_irq(GPIO(N)) or gpio_to_irq(GPIOV33(N)) etc  
* for now, that's != GPIO(N)  
*/   
#define    GPIO(X)        (X)        /* 0 <= X <= 70 */   
#define    GPIOV18(X)    (X)        /* 1.8V i/o; 0 <= X <= 53 */   
#define    GPIOV33(X)    ((X)+54)    /* 3.3V i/o; 0 <= X <= 17 */   
  
/*   
寄存器都是32位到,每位对应一个gpio。  
*/   
struct gpio_controller {   
    u32    dir;            // gpio方向设置寄存器   
  
    u32    out_data;        // gpio设置为输出时,表示输出状态(0或1)   
  
    u32    set_data;        // gpio设置为输出时,用于输出高电平   
  
    u32    clr_data;        // gpio设置为输出时,用于输出低电平   
  
    u32    in_data;        // gpio设置为输入时,用于读取输入值   
  
    u32    set_rising;        // gpio中断上升沿触发设置   
  
    u32    clr_rising;        // gpio中断上升沿触发清除   
  
    u32    set_falling;    // gpio中断下降沿触发设置   
  
    u32    clr_falling;    // gpio中断下降沿触发清除   
  
    u32    intstat;        // gpio中断状态位,由硬件设置,可读取,写1时清除。   
  
};   
  
/* The __gpio_to_controller() and __gpio_mask() functions inline to constants  
* with constant parameters; or in outlined code they execute at runtime.  
*  
* You'd access the controller directly when reading or writing more than  
* one gpio value at a time, and to support wired logic where the value  
* being driven by the cpu need not match the value read back.  
*  
* These are NOT part of the cross-platform GPIO interface  
*/   
static inline struct gpio_controller *__iomem   
__gpio_to_controller(unsigned gpio)   
{   
    void *__iomem ptr;   
  
    if (gpio >= DAVINCI_N_GPIO)   
        return NULL;   
  
    if (gpio < 32)   
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x10);   
    else if (gpio < 64)   
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x38);   
    else if (gpio < 96)   
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x60);   
    else   
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x88);   
  
    return ptr;   
}   
  
static inline u32 __gpio_mask(unsigned gpio)   
{   
    return 1 << (gpio % 32);   
}   
  
/* The get/set/clear functions will inline when called with constant  
* parameters, for low-overhead bitbanging. Illegal constant parameters  
* cause link-time errors.  
*  
* Otherwise, calls with variable parameters use outlined functions.  
*/   
extern int __error_inval_gpio(void);   
  
extern void __gpio_set(unsigned gpio, int value);   
extern int __gpio_get(unsigned gpio);   
  
/* Returns zero or nonzero; works for gpios configured as inputs OR  
* as outputs.  
*  
* NOTE: changes in reported values are synchronized to the GPIO clock.  
* This is most easily seen after calling gpio_set_value() and then immediatly  
* gpio_get_value(), where the gpio_get_value() would return the old value  
* until the GPIO clock ticks and the new value gets latched.  
*/   
extern int gpio_get_value(unsigned gpio);   
extern void gpio_set_value(unsigned gpio, int value);   
  
  
/* powerup default direction is IN */   
extern int gpio_direction_input(unsigned gpio);   
extern int gpio_direction_output(unsigned gpio, int value);   
  
#include <asm-generic/gpio.h>    /* cansleep wrappers */   
  
extern int gpio_request(unsigned gpio, const char *tag);   
extern void gpio_free(unsigned gpio);   
  
static inline int gpio_to_irq(unsigned gpio)   
{   
    return DAVINCI_N_AINTC_IRQ + gpio;   
}   
  
static inline int irq_to_gpio(unsigned irq)   
{   
    return irq - DAVINCI_N_AINTC_IRQ;   
}   
  
#endif                /* __DAVINCI_GPIO_H */  
   

  

posted @ 2014-04-27 16:31  @菜鸟爱学习@  阅读(2082)  评论(0编辑  收藏  举报