线性代数-正定矩阵

1 定义

一个n阶实对称矩阵MM符合正定矩阵的条件是当且仅当非零实系数向量zz,都有zTMzzTMz>0

2 性质

2.1 充要条件

  • 矩阵MM的特征值全是正数
  • A的各阶顺序主子式都是是正的
  • MM合同于单位矩阵

2.2 基本性质

  • 正定矩阵的任一主子矩阵也是正定矩阵。
  • 若A为n阶对称正定矩阵,则存在唯一的主对角线元素都是正数的下三角阵LL,使得A=L∗LTL∗LT,此分解式称为 正定矩阵的Cholesky分解。
  • 若A为n阶正定矩阵,则A为n阶可逆矩阵。

2.3 正定矩阵的判定

  • 对应的二次型正定
  • 所有主子式大于0
  • 所有顺序主子式大于
  • 所有特征根大于0

3 Cholesky分解

posted @ 2018-07-30 16:46  caimagic  阅读(2325)  评论(0编辑  收藏  举报