Leetcode: Unique Binary Search Trees


Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

  1. f(n) = \sum_{i=1}^n f(i-1) * f(n-i), f(0) = 1, f(1) = 1;
  2. This is nature for DP (see below).
  3. f(n) = (2n)!/n!*(n+1)!, called Catalan number
    class Solution{
    public:
            int numTrees(int n)
            {
                vector<int> num(n+1, 0);
                num[0] = 1;
                if (n > 0)
                    num[1] = 1;
                for(int i = 2; i < n+1; i++)
                for(int j = 0; j < i; j++)
                {
                    num[i] += num[j]*num[i-j-1];
                }
                return num[n];
            }
            
    };

    解法二:递归来做,不过有很多重复计算

    //from stanford
    
    public class Solution { public int numTrees(int numKeys) {
    
        if(numKeys <= 1)
            return 1;
        // there will be one value at the root, with whatever remains 
       // on the left and right each forming their own subtrees. 
      // Iterate through all the values that could be the root... 
        int sum = 0;
        int left, right, root;
    
        for(root = 1; root <= numKeys; root++) {
            left = countTrees(root - 1);
            right = countTrees(numKeys - root);
    
            sum += left * right;
        }
    
        return sum;
    }
    }
     1 Use DP to solve this question. For any node i between node 1 to node n, f(n) += f(i-1)*f(n-i).
     2 
     3 int numTrees(int n) {
     4     int num, *f = (int*)malloc((n+1)*sizeof(int));
     5     memset(f, 0, (n+1)*sizeof(int));
     6 
     7     f[0] = 1;
     8     f[1] = 1;
     9 
    10     for (int j = 2; j <= n; j++) {
    11         for (int i = 1; i <= j; i++) {
    12             f[j] += f[i-1]*f[j-i];
    13         }
    14     }
    15 
    16     num = f[n];
    17     free(f);
    18 
    19     return num;
    20 }

     

posted @ 2013-05-01 20:31  caijinlong  阅读(144)  评论(0编辑  收藏  举报