[hadoop](3) MapReduce:创建计数器、任务状态和写入日志

前言

本章主要讲述了如何在mapreduce任务中添加自定义的计数器,从所有任务中聚合信息,并且最终输出到mapreduce web ui中得到统计信息。

准备工作

数据集:ufo-60000条记录,这个数据集有一系列包含下列字段的UFO目击事件记录组成,每条记录的字段都是以tab键分割,请看http://www.cnblogs.com/cafebabe-yun/p/8679994.html

  • sighting date:UFO目击事件发生时间
  • Recorded date:报告目击事件的时间
  • Location:目击事件发生的地点
  • Shape:UFO形状
  • Duration:目击事件持续时间
  • Dexcription:目击事件的大致描述

例子:

19950915 19950915 Redmond, WA 6 min. Young man w/ 2 co-workers witness tiny, distinctly white round disc drifting slowly toward NE. Flew in dir. 90 deg. to winds.

需要共享的数据:州名缩写与全称的对应关系

数据:

AL      Alabama
AK      Alaska
AZ      Arizona
AR      Arkansas
CA      California

 

自定义计数器的使用

  • 将数据集 ufo.tsv 上传到hdfs上
hadoop dfs -put ufo.tsv ufo.tsv

 

  • 将共享数据数据上传到hdfs上,命令同上
  • 创建文件 UFOCountingRecordValidationMapper.java ,并且输入以下代码:
import java.io.IOException;

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapred.lib.*;

public class UFOCountingRecordValidationMapper extends MapReduceBase implements Mapper<LongWritable, Text, LongWritable, Text> {
    public enum LineCounters {
        BAD_LINES,
        TOO_MANY_TABS,
        TOO_FEW_TABS
    };

    @Override
    public void map(LongWritable key, Text value, OutputCollector<LongWritable, Text> output, Reporter reporter) throws IOException {
        String line = value.toString();
        if(validate(line, reporter)) {
            output.collect(key, value);
        }
    }

    private boolean validate(String line, Reporter reporter) {
        String[] words = line.split("\t");
        if (words.length != 6) {
            if (words.length < 6) {
                reporter.incrCounter(LineCounters.TOO_MANY_TABS
, 1);
              } else {
                reporter.incrCounter(LineCounters.TOO_FEW_TABS, 1);
            }
            reporter.incrCounter(LineCounters.BAD_LINES, 1);
            if ((reporter.getCounter(LineCounters.BAD_LINES).getCounter() % 10) == 0) {
                reporter.setStatus("Got 10 bad lines.");
                System.err.println("Read another 10 bad lines.");
            } 
            return false;
        }
        return true;
    }
}
  • 创建文件 UFOLocation3.java ,并输入以下代码:
import java.io.*;
import java.util.*;
import java.net.*;
import java.util.regex.*;

import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapred.lib.*;

public class UFOLocation3 {
    public static class MapClass extends MapReduceBase implements Mapper<LongWritable, Text, Text, LongWritable> {
        private final static LongWritable one = new LongWritable(1);
        private static Pattern locationPattern = Pattern.compile("[a-zA-Z]{2}[^a-zA-Z]*$");
        private Map<String, String> stateNames;    
    
        @Override
        public void configure(JobConf job) {
            try {
                Path[] cacheFiles = DistributedCache.getLocalCacheFiles(job);
                setupStateMap(cacheFiles[0].toString());
            } catch (IOException e) {
                System.err.println("Error reading state file.");
                System.exit(1);
            }
        }

        private void setupStateMap(String fileName) throws IOException {
            Map<String, String> stateCache = new HashMap<String, String>();
            BufferedReader reader = new BufferedReader(new FileReader(fileName));
            String line = null;
            while((line = reader.readLine()) != null) {
                String[] splits = line.split("\t");
                stateCache.put(splits[0], splits[1]);
            }
            stateNames = stateCache;
        }
        
        @Override
        public void map(LongWritable key, Text value, OutputCollector<Text, LongWritable> output, Reporter reporter) throws IOException {
            String line = value.toString();
            String[] fields = line.split("\t");
            String location = fields[2].trim();
            if(location.length() >= 2) {
                Matcher matcher = locationPattern.matcher(location);
                if(matcher.find()) {
                    int start = matcher.start();
                    String state = location.substring(start, start + 2);
                    output.collect(new Text(lookupState(state.toUpperCase())), one);
                }
            }
        }
        
        private String lookupState(String state) {
            String fullName = stateNames.get(state);
            if(fullName == null || "".equals(fullName)) {
                fullName = state;
            }
            return fullName;
        }
    }

    public static void main(String...args) throws Exception {
        Configuration config = new Configuration();
        JobConf conf = new JobConf(config, UFOLocation3.class);
        conf.setJobName("UFOLocation3");
        DistributedCache.addCacheFile(new URI("/user/root/states.txt"), conf);
        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(LongWritable.class);

        JobConf mapconf1 = new JobConf(false);
        ChainMapper.addMapper(conf, UFOCountingRecordValidationMapper.class, LongWritable.class, Text.class, LongWritable.class, Text.class, true, mapconf1);
        JobConf mapconf2 = new JobConf(false);
        ChainMapper.addMapper(conf, MapClass.class, LongWritable.class, Text.class, Text.class, LongWritable.class, true, mapconf2);
        conf.setMapperClass(ChainMapper.class);
        conf.setCombinerClass(LongSumReducer.class);
        conf.setReducerClass(LongSumReducer.class);

        FileInputFormat.setInputPaths(conf, args[0]);
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));
        JobClient.runJob(conf);
    }
}

 

  •  编译上述的两个文件
javac UFOCountingRecordValidationMapper.java UFOLocation3.java
  • 将编译好的文件打包成jar文件
jar cvf ufo3.jar UFO*class
  • 在hadoop上执行jar包
hadoop cvf ufo3.jar UFOLocation3 ufo.tsv output
  • 查看输出结果
hadoop dfs -cat output/part-00000

 

  • 在mapreduce web ui页面上查看统计信息
    •   相应的job,进入job的统计信息页面

    •   查看统计信息

 

posted on 2018-04-01 17:35  飘云粟  阅读(299)  评论(0编辑  收藏  举报