zookeeper 详解
是 分布式 协调 服务。
ZK的工作:
注册:所有节点向ZK争抢注册,注册成功会建立一套节点目录树,先注册的节点为Active节点,后注册节点成为standby;
监听事件:节点在ZK集群里注册监听动作:比如节点的新增、删除、更新等事件
回调函数:发生了监听事件后,ZK集群通知客户端(zkfc)执行回调函数,回调函数是客户端定义的
协调机制:
当中一个客户端向集群任意follower节点请求增删改动作,follower会通知leader,leader会广播给所有follower,当收到过半follower回复后,然后执行增删改动作
如何选举leader?
sid:标识zk server标识; zxid:标识事务标识
先比较事务ID,事务大的得票;事务相同,再比较server标识,大的得票。
专题参考:
一、Zookeeper简单介绍
二、ZooKeeper安装配置
三、Zookeeper命令操作
四、构建ZooKeeper应用
五、ZooKeeper管理分布式环境中的数据
六、ZooKeeper机制架构
七、ZooKeeper一致性原理
八、ZooKeeper伸缩性
ZAB协议
- ZAB协议是专门为zookeeper实现分布式协调功能而设计。zookeeper主要是根据ZAB协议是实现分布式系统数据一致性。
- zookeeper根据ZAB协议建立了主备模型完成zookeeper集群中数据的同步。这里所说的主备系统架构模型是指,在zookeeper集群中,只有一台leader负责处理外部客户端的事物请求(或写操作),然后leader服务器将客户端的写操作数据同步到所有的follower节点中。
- ZAB的协议核心是在整个zookeeper集群中只有一个节点即Leader将客户端的写操作转化为事物(或提议proposal)。Leader节点再数据写完之后,将向所有的follower节点发送数据广播请求(或数据复制),等待所有的follower节点反馈。在ZAB协议中,只要超过半数follower节点反馈OK,Leader节点就会向所有的follower服务器发送commit消息。即将leader节点上的数据同步到follower节点之上。
- ZAB协议中主要有两种模式,第一是消息广播模式;第二是崩溃恢复模式
消息广播模式
- 在zookeeper集群中数据副本的传递策略就是采用消息广播模式。zookeeper中数据副本的同步方式与二阶段提交相似但是却又不同。二阶段提交的要求协调者必须等到所有的参与者全部反馈ACK确认消息后,再发送commit消息。要求所有的参与者要么全部成功要么全部失败。二阶段提交会产生严重阻塞问题。
- ZAB协议中Leader等待follower的ACK反馈是指”只要半数以上的follower成功反馈即可,不需要收到全部follower反馈”
- 图中展示了消息广播的具体流程图
- zookeeper中消息广播的具体步骤如下:
4.1. 客户端发起一个写操作请求
4.2. Leader服务器将客户端的request请求转化为事物proposql提案,同时为每个proposal分配一个全局唯一的ID,即ZXID。
4.3. leader服务器与每个follower之间都有一个队列,leader将消息发送到该队列
4.4. follower机器从队列中取出消息处理完(写入本地事物日志中)毕后,向leader服务器发送ACK确认。
4.5. leader服务器收到半数以上的follower的ACK后,即认为可以发送commit
4.6. leader向所有的follower服务器发送commit消息。 - zookeeper采用ZAB协议的核心就是只要有一台服务器提交了proposal,就要确保所有的服务器最终都能正确提交proposal。这也是CAP/BASE最终实现一致性的一个体现。
- leader服务器与每个follower之间都有一个单独的队列进行收发消息,使用队列消息可以做到异步解耦。leader和follower之间只要往队列中发送了消息即可。如果使用同步方式容易引起阻塞。性能上要下降很多。
崩溃恢复
- zookeeper集群中为保证任何所有进程能够有序的顺序执行,只能是leader服务器接受写请求,即使是follower服务器接受到客户端的请求,也会转发到leader服务器进行处理。
- 如果leader服务器发生崩溃,则zab协议要求zookeeper集群进行崩溃恢复和leader服务器选举。
- ZAB协议崩溃恢复要求满足如下2个要求:
3.1. 确保已经被leader提交的proposal必须最终被所有的follower服务器提交。
3.2. 确保丢弃已经被leader出的但是没有被提交的proposal。 - 根据上述要求,新选举出来的leader不能包含未提交的proposal,即新选举的leader必须都是已经提交了的proposal的follower服务器节点。同时,新选举的leader节点中含有最高的ZXID。这样做的好处就是可以避免了leader服务器检查proposal的提交和丢弃工作。
- leader服务器发生崩溃时分为如下场景:
5.1. leader在提出proposal时未提交之前崩溃,则经过崩溃恢复之后,新选举的leader一定不能是刚才的leader。因为这个leader存在未提交的proposal。
5.2 leader在发送commit消息之后,崩溃。即消息已经发送到队列中。经过崩溃恢复之后,参与选举的follower服务器(刚才崩溃的leader有可能已经恢复运行,也属于follower节点范畴)中有的节点已经是消费了队列中所有的commit消息。即该follower节点将会被选举为最新的leader。剩下动作就是数据同步过程。
数据同步
- 在zookeeper集群中新的leader选举成功之后,leader会将自身的提交的最大proposal的事物ZXID发送给其他的follower节点。follower节点会根据leader的消息进行回退或者是数据同步操作。最终目的要保证集群中所有节点的数据副本保持一致。
- 数据同步完之后,zookeeper集群如何保证新选举的leader分配的ZXID是全局唯一呢?这个就要从ZXID的设计谈起。
2.1 ZXID是一个长度64位的数字,其中低32位是按照数字递增,即每次客户端发起一个proposal,低32位的数字简单加1。高32位是leader周期的epoch编号,至于这个编号如何产生(我也没有搞明白),每当选举出一个新的leader时,新的leader就从本地事物日志中取出ZXID,然后解析出高32位的epoch编号,进行加1,再将低32位的全部设置为0。这样就保证了每次新选举的leader后,保证了ZXID的唯一性而且是保证递增的。
ZAB协议原理
- ZAB协议要求每个leader都要经历三个阶段,即发现,同步,广播。
- 发现:即要求zookeeper集群必须选择出一个leader进程,同时leader会维护一个follower可用列表。将来客户端可以这follower中的节点进行通信。
- 同步:leader要负责将本身的数据与follower完成同步,做到多副本存储。这样也是体现了CAP中高可用和分区容错。follower将队列中未处理完的请求消费完成后,写入本地事物日志中。
- 广播:leader可以接受客户端新的proposal请求,将新的proposal请求广播给所有的follower。
Zookeeper设计目标
- zookeeper作为当今最流行的分布式系统应用协调框架,采用zab协议的最大目标就是建立一个高可用可扩展的分布式数据主备系统。即在任何时刻只要leader发生宕机,都能保证分布式系统数据的可靠性和最终一致性。
- 深刻理解ZAB协议,才能更好的理解zookeeper对于分布式系统建设的重要性。以及为什么采用zookeeper就能保证分布式系统中数据最终一致性,服务的高可用性。
转自:https://blog.csdn.net/junchenbb0430/article/details/77583955
学习技术不是用来写HelloWorld和Demo的,而是要用来解决线上系统的真实问题的.