【Spark-SQL学习之二】 SparkSQL DataFrame创建和储存

环境
  虚拟机:VMware 10
  Linux版本:CentOS-6.5-x86_64
  客户端:Xshell4
  FTP:Xftp4
  jdk1.8
  scala-2.10.4(依赖jdk1.8)
  spark-1.6

1、读取json格式的文件创建DataFrame
注意:
(1)json文件中的json数据不能嵌套json格式数据。
(2)DataFrame是一个一个Row类型的RDD,df.rdd()/df.javaRdd()。
(3)可以两种方式读取json格式的文件。
sqlContext.read().format(“json”).load(“path”)
sqlContext.read().json(“path”)
(4)df.show()默认显示前20行数据。
(5)DataFrame原生API可以操作DataFrame(不方便)。
(6)注册成临时表时,表中的列默认按ascii顺序显示列。

数据:json
{"name":"zhangsan","age":"20"}
{"name":"lisi"}
{"name":"wangwu","age":"18"}

示例代码:
Java:

package com.wjy.df;

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.rdd.RDD;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;

/**
 * 读取json格式的文件创建DataFrame
 * 
 * 注意 :json文件中不能嵌套json格式的内容
 * 
 * 1.读取json格式两种方式
 * 2.df.show默认显示前20行,使用df.show(行数)显示多行
 * 3.df.javaRDD/(scala df.rdd) 将DataFrame转换成RDD
 * 4.df.printSchema()显示DataFrame中的Schema信息
 * 5.dataFram自带的API 操作DataFrame ,用的少
 * 6.想使用sql查询,首先要将DataFrame注册成临时表:df.registerTempTable("jtable"),再使用sql,怎么使用sql?sqlContext.sql("sql语句")
 * 7.不能读取嵌套的json文件
 * 8.df加载过来之后将列按照ascii排序了
 * @author root
 *
 */
public class CreateDFFromJosonFile {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setMaster("local").setAppName("CreateDFFromJosonFile");
        SparkContext sc = new SparkContext(conf);//注意 这里不是JavaSparkContext
        //创建SQLContext
        SQLContext sqlContext = new SQLContext(sc);
        
        /**
         * DataFrame的底层是一个一个的RDD  RDD的泛型是Row类型。
         * 以下两种方式都可以读取json格式的文件
         * {"name":"zhangsan","age":"20"}
           {"name":"lisi"}
           {"name":"wangwu","age":"18"}
         */
        DataFrame df = sqlContext.read().format("json").load("./data/json");//{"name":"zhangsan","age":"20"};
        df.show();// 显示 DataFrame中的内容,默认显示前20行。如果现实多行要指定多少行show(行数) 注意:当有多个列时,显示的列先后顺序是按列的ascii码先后显示。
        DataFrame df2 = sqlContext.read().json("./data/json");
        df2.show();
        /*
         * +----+--------+
           | age|    name|
           +----+--------+
           |  20|zhangsan|
           |null|    lisi|
           |  18|  wangwu|
           +----+--------+
         */
        
        //DataFrame转换成RDD
        JavaRDD<Row> javaRDD = df.javaRDD();
        //树形的形式显示schema信息
        df.printSchema();
        /*
         * root
             |-- age: string (nullable = true)
             |-- name: string (nullable = true)    
         */
        
        //dataFram自带的API 操作DataFrame 这种方式比较麻烦 用的比较少
        //select name from table
        df.select("name").show();
        /*
         * +--------+
           |    name|
           +--------+
           |zhangsan|
           |    lisi|
           |  wangwu|
           +--------+
         */
        //select name ,age+10 as addage from table
        df.select(df.col("name"),df.col("age").plus(10).alias("addage")).show();
        /*
         * +--------+------+
           |    name|addage|
           +--------+------+
           |zhangsan|  30.0|
           |    lisi|  null|
           |  wangwu|  28.0|
           +--------+------+
         */
        //select name ,age from table where age>19
        df.select(df.col("name"),df.col("age")).where(df.col("age").gt(19)).show();
        /*
         * +--------+---+
           |    name|age|
           +--------+---+
           |zhangsan| 20|
           +--------+---+
         */
        //select age,count(*) from table group by age
        df.groupBy(df.col("age")).count().show();
        /*
         * +----+-----+
           | age|count|
           +----+-----+
           |  18|    1|
           |  20|    1|
           |null|    1|
           +----+-----+
         */
        
        //将DataFrame注册成临时的一张表,这张表相当于临时注册到内存中,是逻辑上的表,不会物化到磁盘  这种方式用的比较多
        df.registerTempTable("person");
        DataFrame df3 = sqlContext.sql("select age,count(*) as gg from person group by age");
        df3.show();
        DataFrame df4 = sqlContext.sql("select age, name from person");
        df4.show();
        
        sc.stop();
    }

}

 

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext

object CreateDFFromJsonFile {
  def main(args:Array[String]):Unit={
    val conf = new SparkConf().setMaster("local").setAppName("CreateDFFromJsonFile");
    val sc = new SparkContext(conf);
    val sqlContext = new SQLContext(sc);
    
    val df1 = sqlContext.read.json("./data/json");
    df1.show();
    val df2 = sqlContext.read.format("json").load("./data/json");
    df2.show();
    
    val rdd = df1.rdd;
    df1.printSchema();
    
    //select name from table
    df1.select(df1.col("name")).show();
    //select name from table where age>19
    df1.select(df1.col("name"),df1.col("age")).where(df1.col("age").gt(19)).show();
    //select count(*) from table group by age
    df1.groupBy(df1.col("age")).count().show();
    
    //注册临时表
    df1.registerTempTable("person");
    val df3 = sqlContext.sql("select * from person");
    df3.show();
    /*
     * +----+--------+
             | age|    name|
       +----+--------+
       |  20|zhangsan|
       |null|    lisi|
       |  18|  wangwu|
       +----+--------+
     */
    sc.stop();
  }
}

 


2、通过json格式的RDD创建DataFrame
RDD的元素类型是String,但是格式必须是JSON格式
示例代码:
Java:

package com.wjy.df;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;

public class CreateDFFromJsonRDD {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setMaster("local").setAppName("CreateDFFromJsonRDD");
        //SparkContext sc = new SparkContext(conf);
        JavaSparkContext sc = new JavaSparkContext(conf);
        SQLContext sqlContext = new SQLContext(sc);
        JavaRDD<String> javaRDD1 = sc.parallelize(Arrays.asList("{'name':'zhangsan','age':\"18\"}",
                                     "{\"name\":\"lisi\",\"age\":\"19\"}",
                                     "{\"name\":\"wangwu\",\"age\":\"20\"}"));
        
        JavaRDD<String> javaRDD2 = sc.parallelize(Arrays.asList("{\"name\":\"zhangsan\",\"score\":\"100\"}",
                                     "{\"name\":\"lisi\",\"score\":\"200\"}",
                                     "{\"name\":\"wangwu\",\"score\":\"300\"}"));
        
        DataFrame namedf = sqlContext.read().json(javaRDD1);
        namedf.show();
        DataFrame scoredf = sqlContext.read().json(javaRDD2);
        scoredf.show();
        
        //DataFrame原生API使用
        //SELECT t1.name,t1.age,t2.score from t1, t2 where t1.name = t2.name
        namedf.join(scoredf, namedf.col("name").$eq$eq$eq(scoredf.col("name")))
        .select(namedf.col("name"),namedf.col("age"),scoredf.col("score")).show();
        
        //注册成临时表
        namedf.registerTempTable("name");
        scoredf.registerTempTable("score");
        //如果自己写的sql查询得到的DataFrame结果中的列会按照 查询的字段顺序返回
        DataFrame result = sqlContext.sql("select name.name,name.age,score.score "
                            + "from name join score "
                            + "on name.name = score.name");
        result.show();
        /*
         * +--------+---+-----+
           |    name|age|score|
           +--------+---+-----+
           |zhangsan| 18|  100|
           |    lisi| 19|  200|
           |  wangwu| 20|  300|
           +--------+---+-----+
         */
        
        
        sc.stop();
    }

}

 

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext

object CreateDFFromJsonRDD {
  def main(args:Array[String]):Unit={
    val conf = new SparkConf().setMaster("local").setAppName("CreateDFFromJsonRDD");
    val sc = new SparkContext(conf);
    val sqlContext = new SQLContext(sc);
    val rdd1 = sc.makeRDD(Array(
          "{\"name\":\"zhangsan\",\"age\":18}",
          "{\"name\":\"lisi\",\"age\":19}",
          "{\"name\":\"wangwu\",\"age\":20}"
        ));
    val rdd2 = sc.makeRDD(Array(
            "{\"name\":\"zhangsan\",\"score\":100}",
            "{\"name\":\"lisi\",\"score\":200}",
            "{\"name\":\"wangwu\",\"score\":300}"
            ));
    val namedf = sqlContext.read.json(rdd1);
    val scoredf = sqlContext.read.json(rdd2);
    namedf.registerTempTable("name");
    scoredf.registerTempTable("score");
    val result = sqlContext.sql("select name.name,name.age,score.score from name,score where name.name = score.name");
    result.show();
      
    sc.stop();
  }
}

 

 

3、通过非json格式的RDD来创建出来一个DataFrame
(1)通过反射的方式 (不建议使用)
(1.1)自定义类要可序列化(注意变量被关键字transient修饰 则不会被序列化;静态变量也不能被序列化)
注意ava中以下几种情况下不被序列化的问题:
  1.1.1.反序列化时serializable 版本号不一致时会导致不能反序列化。
  1.1.2.子类中实现了serializable接口,父类中没有实现,父类中的变量不能被序列化,序列化后父类中的变量会得到null。
  注意:父类实现serializable接口,子类没有实现serializable接口时,子类可以正常序列化
  1.1.3.被关键字transient修饰的变量不能被序列化。
  1.1.4.静态变量不能被序列化,属于类,不属于方法和对象,所以不能被序列化。
另外:一个文件多次writeObject时,如果有相同的对象已经写入文件,那么下次再写入时,只保存第二次写入的引用,读取时,都是第一次保存的对象。
(1.2)自定义类的访问级别是Public
(1.3)RDD转成DataFrame后会根据映射将字段按Assci码排序
(1.4)将DataFrame转换成RDD时获取字段两种方式,一种是df.getInt(0)下标获取(不推荐使用),另一种是df.getAs(“列名”)获取(推荐使用)
示例代码:
Java:

package com.wjy.df;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;

/**
 * @author Administrator
 * 通过反射的方式将非json格式的RDD转换成DataFrame
 * 注意:这种方式不推荐使用
 */
public class CreateDFFromRDDWithReflect {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setMaster("local").setAppName("CreateDFFromRDDWithReflect");
        JavaSparkContext sc = new JavaSparkContext(conf);
        SQLContext sqlContext = new SQLContext(sc);
        /*
         * 1,zhansan,18
           2,lisi,19
           3,wangwu,20
         */
        JavaRDD<String> lineRDD = sc.textFile("./data/person.txt");
        JavaRDD<Person> personRDD = lineRDD.map(new Function<String, Person>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Person call(String line) throws Exception {
                String[] ss = line.split(",");
                Person p = new Person();
                p.setId(ss[0]);
                p.setName(ss[1]);
                p.setAge(Integer.valueOf(ss[2]));
                return p;
            }
        });
        
        /**
         * 传入进去Person.class的时候,sqlContext是通过反射的方式创建DataFrame
         * 在底层通过反射的方式获得Person的所有field,结合RDD本身,就生成了DataFrame
         */
        DataFrame df1 = sqlContext.createDataFrame(personRDD, Person.class);
        df1.show();
        df1.printSchema();
        
        df1.registerTempTable("person");
        DataFrame ret = sqlContext.sql("select  name,id,age from person where id = 2");
        ret.show();
        
        /*
         * +----+---+---+
           |name| id|age|
           +----+---+---+
           |lisi|  2| 19|
           +----+---+---+
         */
        
        /**
         * 将DataFrame转成JavaRDD
         * 注意:
         * 1.可以使用row.getInt(0),row.getString(1)...通过下标获取返回Row类型的数据,但是要注意列顺序问题---不常用
         * 2.可以使用row.getAs("列名")来获取对应的列值。
         */
        JavaRDD<Row> javaRDD = ret.javaRDD();
        JavaRDD<Person> map = javaRDD.map(new Function<Row, Person>() {
            private static final long serialVersionUID = 1L;

            @Override
            public Person call(Row row) throws Exception {
                //顺序和ret一致
                Person p = new Person();
//                p.setId(row.getString(1));
//                p.setName(row.getString(0));
//                p.setAge(row.getInt(2));
                
                p.setId(row.getAs("id"));
                p.setName(row.getAs("name"));
                p.setAge(row.getAs("age"));
                
                return p;
            }
        });
        
        map.foreach(new VoidFunction<Person>() {
            private static final long serialVersionUID = 1L;

            @Override
            public void call(Person p) throws Exception {
                System.out.println(p);
            }
        });
        
        
        
        sc.stop();
    }

}

 

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext

//case class 默认是可以序列化的,也就是实现了Serializable;ase class构造函数的参数是public级别
case class Person(id:String,name:String,age:Integer);

object CreateDFFromRDDWithReflect {
  def main(args:Array[String]):Unit={
    val conf = new SparkConf().setMaster("local").setAppName("CreateDFFromRDDWithReflect");
    val sc = new SparkContext(conf); 
    val sqlContext = new SQLContext(sc);
    
    val lineRDD = sc.textFile("./data/person.txt");
    val personRDD = lineRDD.map { x => {
      val p = Person(x.split(",")(0), x.split(",")(1), Integer.valueOf(x.split(",")(2)));
      p
    }};
    //将RDD隐式转换成DataFrame
    import sqlContext.implicits._
    val df = personRDD.toDF();
    df.show();
    /*
     * +---+-------+---+
       | id|   name|age|
       +---+-------+---+
       |  1|zhansan| 18|
       |  2|   lisi| 19|
       |  3| wangwu| 20|
       +---+-------+---+
     */
    
    //DataFrame转成RDD
    val rdd = df.rdd;
    val result = rdd.map { x => {
      Person(x.getAs("id"),x.getAs("name"),x.getAs("age"));
    }};
    result.foreach {println};
    /*
     * Person(1,zhansan,18)
       Person(2,lisi,19)
       Person(3,wangwu,20)
     */
    
    sc.stop();
  }
}

 

(2)动态创建schema的方式
示例代码:
Java:

package com.wjy.df;

import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

/**
 * @author Administrator
 *
 * 动态创建Schema将非json格式RDD转换成DataFrame
 */
public class CreateDFFromRDDWithStruct {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setMaster("local").setAppName("CreateDFFromRDDWithStruct");
        JavaSparkContext sc = new JavaSparkContext(conf);
        SQLContext sqlContext = new SQLContext(sc);
        JavaRDD<String> lineRDD = sc.textFile("./data/person.txt");
        
        //转换成Row类型的RDD
        JavaRDD<Row> rowrdd = lineRDD.map(new Function<String, Row>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Row call(String line) throws Exception {
                String[] ss = line.split(",");
                return RowFactory.create(ss[0],ss[1],Integer.valueOf(ss[2]));
            }
        });
        
        //动态构建DataFrame中的元数据,一般来说这里的字段可以来源自字符串,也可以来源于外部数据库
        List<StructField> asList = Arrays.asList(
                DataTypes.createStructField("id", DataTypes.StringType, true),
                DataTypes.createStructField("name", DataTypes.StringType, true),
                DataTypes.createStructField("age", DataTypes.IntegerType, true)
                );
        //根据元数据创建schema
        StructType schema = DataTypes.createStructType(asList);
        //根据row和schema创建DataFrame
        DataFrame df = sqlContext.createDataFrame(rowrdd, schema);
        df.show();
        /*
         * +---+-------+---+
           | id|   name|age|
           +---+-------+---+
           |  1|zhansan| 18|
           |  2|   lisi| 19|
           |  3| wangwu| 20|
           +---+-------+---+
         */
        
        
        
        sc.stop();
    }

}

 

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.RowFactory
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.IntegerType

object CreateDFFromRDDWithStruct {
  def main(args:Array[String]):Unit={
    val conf = new SparkConf().setMaster("local").setAppName("CreateDFFromRDDWithStruct");
    val sc = new SparkContext(conf);
    val sqlContext = new SQLContext(sc);
    val lineRDD = sc.textFile("./data/person.txt");
    //row
    val rowRDD = lineRDD.map { x => {
      val ss = x.split(",");
      RowFactory.create(ss(0),ss(1),Integer.valueOf(ss(2)));
    }};
    //schema
    val schema = StructType(List(
        StructField("id",StringType,true),
        StructField("name",StringType,true),
        StructField("age",IntegerType,true)
    ));
    //根据row和schema创建DataFrame
    val df = sqlContext.createDataFrame(rowRDD, schema);
    df.show();
    
    sc.stop();
  }
}

 


4、读取parquet文件创建DF
注意:
可以将DataFrame存储成parquet文件。保存成parquet文件的方式有两种
df.write().mode(SaveMode.Overwrite)format("parquet").save("./sparksql/parquet");
df.write().mode(SaveMode.Overwrite).parquet("./sparksql/parquet");
SaveMode指定文件保存时的模式。
  Overwrite:覆盖
  Append:追加
  ErrorIfExists:如果存在就报错
  Ignore:如果存在就忽略


示例代码:
Java:

package com.wjy.df;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;

public class CreateDFFromParquet {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setMaster("local").setAppName("CreateDFFromParquet");
        JavaSparkContext sc = new JavaSparkContext(conf);
        SQLContext sqlContext = new SQLContext(sc);
        JavaRDD<String> jsonRDD = sc.textFile("./data/json");
        DataFrame dataFrame = sqlContext.read().json(jsonRDD);
        dataFrame.show();
        /**
         * 将DataFrame保存成parquet文件,
         * SaveMode指定存储文件时的保存模式:
         *         Overwrite:覆盖
         *         Append:追加
         *         ErrorIfExists:如果存在就报错
         *         Ignore:如果存在就忽略
         * 保存成parquet文件有以下两种方式:
         */
        //方式一:save
        dataFrame.write().mode(SaveMode.Overwrite).format("parquet").save("./data/parquet");
        //方式二:parquet
        dataFrame.write().mode(SaveMode.Ignore).parquet("./data/parquet");
        /*
         * Initialized Parquet WriteSupport with Catalyst schema:
            {
                  "type" : "struct",
                  "fields" : [ {
                "name" : "age",
                "type" : "string",
                "nullable" : true,
                "metadata" : { }
                  }, {
                    "name" : "name",
                    "type" : "string",
                    "nullable" : true,
                    "metadata" : { }
                  } ]
            }
            and corresponding Parquet message type:
            message spark_schema {
                  optional binary age (UTF8);
                  optional binary name (UTF8);
            }

         */
        
        /**
         * 加载parquet文件成DataFrame    
         * 加载parquet文件有以下两种方式:    
         */
        //方式一:load
        DataFrame df1 = sqlContext.read().format("parquet").load("./data/parquet");
        df1.show();
        //方式二:parquet
        DataFrame df2 = sqlContext.read().parquet("./data/parquet");
        df2.show();
        
        sc.stop();
    }

}

 

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.SaveMode

object CreateDFFromParquet {
  def main(args:Array[String]):Unit={
    val conf = new SparkConf().setMaster("local").setAppName("CreateDFFromParquet");
    val sc = new SparkContext(conf);
    val sqlContext  = new SQLContext(sc);
    val jsonRDD = sc.textFile("./data/json");
    val df = sqlContext.read.json(jsonRDD);
    df.show();
    
    /**
      * 将DF保存为parquet文件
     */
    df.write.mode(SaveMode.Overwrite).format("parquet").save("./data/parquet");
    df.write.mode(SaveMode.Ignore).parquet("./data/parquet");
    
    /**
     * 读取parquet文件
     */
    val df1 = sqlContext.read.format("parquet").load("./data/parquet");
    df1.show();
    val df2 = sqlContext.read.parquet("./data/parquet");
    df.show();
    
    sc.stop();
  }
}

 


5、读取JDBC中的数据创建DataFrame(MySql为例)
两种方式创建DataFrame
第一种方式读取MySql数据库表,加载为DataFrame
第二种方式读取MySql数据表加载为DataFrame
示例代码:
Java:

package com.wjy.df;

import java.util.HashMap;
import java.util.Map;
import java.util.Properties;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.DataFrameReader;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode;

public class CreateDFFromMysql {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setMaster("local").setAppName("CreateDFFromMysql");
        /**
         *     配置join或者聚合操作shuffle数据时分区的数量
         */
        conf.set("spark.sql.shuffle.partitions", "1");
        JavaSparkContext sc = new JavaSparkContext(conf);
        SQLContext sqlContext = new SQLContext(sc);
        
        /**
         * 第一种方式读取MySql数据库表,加载为DataFrame
         */
        Map<String, String> options = new HashMap<String,String>();
        options.put("url", "jdbc:mysql://134.32.123.101:3306/spark");
        options.put("driver", "com.mysql.jdbc.Driver");
        options.put("user", "root");
        options.put("password", "123456");
        options.put("dbtable", "person");
        DataFrame df1 = sqlContext.read().format("jdbc").options(options).load();
        df1.show();
        df1.registerTempTable("person1");
        
        /**
         * 第二种方式读取MySql数据表加载为DataFrame
         */
        DataFrameReader reader = sqlContext.read().format("jdbc");
        reader.option("url", "jdbc:mysql://134.32.123.101:3306/spark");
        reader.option("driver", "com.mysql.jdbc.Driver");
        reader.option("user", "root");
        reader.option("password", "123456");
        reader.option("dbtable", "score");
        DataFrame df2 = reader.load();
        df2.show();
        df2.registerTempTable("score1");
        
        DataFrame dataFrame = sqlContext.sql("select person1.id,person1.name,person1.age,score1.score "
                        + "from person1,score1 "
                        + "where person1.name = score1.name");
        dataFrame.show();
        
        /**
         * 将DataFrame结果保存到Mysql中
         */
        Properties properties = new Properties();
        properties.setProperty("user", "root");
        properties.setProperty("password", "123456");
        /**
         * SaveMode:
         * Overwrite:覆盖
         * Append:追加
         * ErrorIfExists:如果存在就报错
         * Ignore:如果存在就忽略
         * 
         */
        dataFrame.write().mode(SaveMode.Overwrite).jdbc("jdbc:mysql://134.32.123.101:3306/spark", "result", properties);
        System.out.println("----Finish----");
        
        sc.stop();
    }

}

 

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import java.util.HashMap
import java.util.Properties
import org.apache.spark.sql.SaveMode

object CreateDFFromMysql {
  def main(args:Array[String]):Unit={
    val conf = new SparkConf().setMaster("local").setAppName("CreateDFFromMysql");
    val sc = new SparkContext(conf);
    val sqlContext = new SQLContext(sc);
    
    /**
         * 第一种方式读取Mysql数据库表创建DF
         */
    val options = new HashMap[String,String]();
    options.put("url", "jdbc:mysql://134.32.123.101:3306/spark")
        options.put("driver","com.mysql.jdbc.Driver")
        options.put("user","root")
        options.put("password", "123456")
        options.put("dbtable","person")
        val df1 = sqlContext.read.format("jdbc").options(options).load();
    df1.show();
    df1.registerTempTable("person");
    
    /**
         * 第二种方式读取Mysql数据库表创建DF
         */
    var reader = sqlContext.read.format("jdbc");
    reader.option("url", "jdbc:mysql://134.32.123.101:3306/spark")
        reader.option("driver","com.mysql.jdbc.Driver")
        reader.option("user","root")
        reader.option("password","123456")
        reader.option("dbtable", "score")
    val df2 = reader.load();
    df2.show();
    df2.registerTempTable("score");
    
    val result = sqlContext.sql("select person.id,person.name,score.score from person,score where person.name = score.name")
        result.show()
        
    /**
         * 将数据写入到Mysql表中
         */
    val properties = new Properties()
        properties.setProperty("user", "root")
        properties.setProperty("password", "123456")
        result.write.mode(SaveMode.Overwrite).jdbc("jdbc:mysql://134.32.123.101:3306/spark", "result", properties);
    
    
    sc.stop();
  }
}

 


6、读取Hive中的数据加载成DataFrame
HiveContext是SQLContext的子类,连接Hive建议使用HiveContext。
由于本地没有Hive环境,要提交到集群运行,提交命令:

./spark-submit 
--master spark://node1:7077,node2:7077 
--executor-cores 1 
--executor-memory 2G 
--total-executor-cores 1
--class com.bjsxt.sparksql.dataframe.CreateDFFromHive 
/root/test/HiveTest.jar

 

示例代码:
Java:

package com.wjy.df;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.hive.HiveContext;

/**
 * 如果读取hive中数据,要使用HiveContext
 * HiveContext.sql(sql)可以操作hive表,还可以操作虚拟的表
 *
 */
public class CreateDFFromHive {

    public static void main(String[] args) {
        //不能设置local了  需要打成jar在hive上运行
        SparkConf conf = new SparkConf().setAppName("CreateDFFromHive");
        JavaSparkContext sc = new JavaSparkContext(conf);
        //HiveContext是SQLContext的子类。 使用hive sql操作
        HiveContext hiveContext = new HiveContext(sc);
        hiveContext.sql("USE Spark");//使用spark数据库 
        
        //表student_infos
        hiveContext.sql("drop table if exists student_infos");//删除表
        hiveContext.sql("CREATE TABLE IF NOT EXISTS student_infos (name STRING,age INT) row format delimited fields terminated by '\t' ");//创建表
        hiveContext.sql("load data local inpath '/root/test/student_infos' into table student_infos");//hive加载数据
        
        //表student_scores
        hiveContext.sql("DROP TABLE IF EXISTS student_scores");
        hiveContext.sql("CREATE TABLE IF NOT EXISTS student_scores (name STRING, score INT) row format delimited fields terminated by '\t'");  
        hiveContext.sql("LOAD DATA  LOCAL INPATH '/root/test/student_scores' INTO TABLE student_scores");
        
        /**
         * 查询表生成DataFrame
         */
        DataFrame student_infos = hiveContext.table("student_infos");
        student_infos.show();
        DataFrame student_scores = hiveContext.table("student_scores");
        student_scores.show();
        DataFrame goodStudentsDF = hiveContext.sql("SELECT si.name, si.age, ss.score "
                    + "FROM student_infos si "
                    + "JOIN student_scores ss "
                    + "ON si.name=ss.name "
                    + "WHERE ss.score>=80");
        goodStudentsDF.show();
        goodStudentsDF.registerTempTable("goodStudent");
        DataFrame result = hiveContext.sql("select * from goodstudent");
        result.show();
        
        /**
         * 将结果保存到hive表 good_student_infos
         */
        hiveContext.sql("DROP TABLE IF EXISTS good_student_infos");
        goodStudentsDF.write().mode(SaveMode.Overwrite).saveAsTable("good_student_infos");
        DataFrame table = hiveContext.table("good_student_infos");
        Row[] rows = table.collect();
        for (Row row:rows)
        {
            System.out.println(row);
        }
        
        
        sc.stop();
    }

}

 

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.SaveMode

object CreateDFFromHive {
  def main(args:Array[String]):Unit={
    //依赖hive 不能设置local模式
    val conf = new SparkConf().setAppName("CreateDFFromHive");
    val sc = new SparkContext(conf);
    /**
     * HiveContext是SQLContext的子类。
     */
    val hiveContext = new HiveContext(sc);
    hiveContext.sql("use spark")
    //student_infos
    hiveContext.sql("drop table if exists student_infos")
    hiveContext.sql("create table if not exists student_infos (name string,age int) row format  delimited fields terminated by '\t'")
    hiveContext.sql("load data local inpath '/root/test/student_infos' into table student_infos")
    val df1 = hiveContext.table("student_infos");
    df1.show();
    
    //student_scores
    hiveContext.sql("drop table if exists student_scores")
    hiveContext.sql("create table if not exists student_scores (name string,score int) row format delimited fields terminated by '\t'")
    hiveContext.sql("load data local inpath '/root/test/student_scores' into table student_scores")
    val df2 = hiveContext.table("student_scores");
    df2.show();
    
    val df = hiveContext.sql("select si.name,si.age,ss.score from student_infos si,student_scores ss where si.name = ss.name")
    df.show();
    
    /**
     * 将结果写入到hive表中
     */
    //good_student_infos
    hiveContext.sql("drop table if exists good_student_infos")
    df.write.mode(SaveMode.Overwrite).saveAsTable("good_student_infos");
    
    sc.stop();
  }
}

 

附:Spark On Hive的配置
1、在Spark客户端配置Hive On Spark
在Spark客户端安装包下spark-1.6.0/conf中创建文件hive-site.xml:
配置hive的metastore路径

<configuration>
<property>
<name>hive.metastore.uris</name>
<value>thrift://node1:9083</value>
</property>
</configuration>

 

2、启动Hive的metastore服务
hive --service metastore

3、启动zookeeper集群,启动HDFS集群,启动spark集群。

4、启动SparkShell 读取Hive中的表总数,对比hive中查询同一表查询总数测试时间。

./spark-shell 
--master spark://node1:7077,node2:7077 
--executor-cores 1 
--executor-memory 1g 
--total-executor-cores 1

......

scala>import org.apache.spark.sql.hive.HiveContext;
scala>val hc = new HiveContext(sc);
scala>hc.sql("show databases").show();
scala>hc.sql("user default").show();
scala>hc.sql("select count(*) from jizhan").show();

 

注意:
如果使用Spark on Hive 查询数据时,出现错误:Caused by:java.net.UnkonwnHostException:....
找不到HDFS集群路径,要在客户端机器conf/spark-env.sh中设置HDFS的路径:

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

 

参考:
Spark

posted @ 2019-04-16 16:13  cac2020  阅读(1966)  评论(0编辑  收藏  举报