121.沙子合并

1382 沙子合并

 

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 大师 Master
题目描述 Description

   设有N堆沙子排成一排,其编号为1,2,3,…,N(N<=300)。每堆沙子有一定的数量,可以用一个整数来描述,现在要将这N堆沙子合并成为一堆,每次只能合并相邻的两堆,合并的代价为这两堆沙子的数量之和,合并后与这两堆沙子相邻的沙子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同,如有4堆沙子分别为 1 3 5 2 我们可以先合并1、2堆,代价为4,得到4 5 2 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24,如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22;问题是:找出一种合理的方法,使总的代价最小。输出最小代价。

输入描述 Input Description

第一行一个数N表示沙子的堆数N。
第二行N个数,表示每堆沙子的质量。 <=1000

输出描述 Output Description

合并的最小代价

样例输入 Sample Input

4
1 3 5 2

样例输出 Sample Output

22

数据范围及提示 Data Size & Hint

各个测试点1s

分类标签 Tags 点此展开 

代码:
#include< cstdio >
#include< iostream >
#include< cstring >
using namespace std;
int f[301][301],a[301],sum[301],n;
void input()
{
scanf("%d",&n);
for(int i=1;i<=n;++i)
{
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];//计算前i堆沙子的质量 
}
}
void dp()
{
memset(f,99,sizeof(f));
for(int i=1;i<=n-1;++i)//初始化,f[i][i]都是 0,相邻的点合并设为两堆的数量之和。 
{
f[i][i]=0;
int j=i+1;
f[i][j]=a[i]+a[j];
}
f[n][n]=0;
for(int i=n-1;i>=1;--i)//从n-1更新的原因,因为前面的跟信用到后面的点,所以由后向前 
 for(int j=i+1;j<=n;++j)//把i和它只有的所有都更新一遍 
   for(int k=i;k<=j-1;++k)//更新利用的是,他们之间的沙堆 
   f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+sum[j]-sum[i-1]); 
cout<<f[1][n]<<endl;
}
int main()
{
input();
dp();
return 0;
 
posted @ 2016-04-04 16:10  csgc0131123  阅读(247)  评论(0编辑  收藏  举报