Deep Residual Learning

这是微软方面的最新研究成果, 在第六届ImageNet年度图像识别测试中,微软研究院的计算机图像识别系统在几个类别的测试中获得第一名。

本文是解决超深度CNN网络训练问题,152层及尝试了1000层。

随着CNN网络的发展,尤其的VGG网络的提出,大家发现网络的层数是一个关键因素,貌似越深的网络效果越好。但是随着网络层数的增加,问题也随之而来。

首先一个问题是 vanishing/exploding gradients,即梯度的消失或发散。这就导致训练难以收敛。但是随着 normalized initialization [23, 9, 37, 13] and intermediate normalization layers[16]的提出,解决了这个问题。

当收敛问题解决后,又一个问题暴露出来:随着网络深度的增加,系统精度得到饱和之后,迅速的下滑。让人意外的是这个性能下降不是过拟合导致的。如文献 [11, 42]指出,对一个合适深度的模型加入额外的层数导致训练误差变大。如下图所示:
resner1

上图中两条曲线分别为20层和56层的“plain”网络在训练集和测试集上的错误率,这里的“plain”是指一般的无环的“直流”卷积网络。按照以往的经验理论,网络越深应该有更好的分类效果,加大网络的深度是一种很有效的提高准确率的方法。但从上图中的曲线很明显是与这一结论相矛盾的,20层的网络无论是在训练集还是测试集上的错误率都比56层的要低。为了说明出现这一现象并不是因为梯度弥散或是膨胀导致的,所以在每一个卷积之后,ReLU之前 会使用bn层。对于深层的网络,有这样一个现象,算法开始是收敛的,但随着网络加深,准确略逐渐的下降,但并没有出现过拟合。所以说明出现这样的现象是因为优化出现问题。
这篇文章提出一种deep residual learning framework的结构,解决对于很深的网络的优化问题。这种结构主要受启发于LSTM和HighWay。这种结构有两个优点(1)比较容易优化(2)网络层数加深可以有更高的准确率。
2 Related Work
Residual Representations
以前关于残差表示的文献表明,问题的重新表示或预处理会简化问题的优化。 These methods suggest that a good reformulation or preconditioning can simplify the optimization

Shortcut Connections
CNN网络以前对shortcut connections 也有所应用。

3 Deep Residual Learning
3.1. Residual Learning
这里我们首先求取残差映射 F(x):= H(x)-x,那么原先的映射就是 F(x)+x。尽管这两个映射应该都可以近似理论真值映射 the desired functions (as hypothesized),但是它俩的学习难度是不一样的。

这种改写启发于 图1中性能退化问题违反直觉的现象。正如前言所说,如果增加的层数可以构建为一个 identity mappings,那么增加层数后的网络训练误差应该不会增加,与没增加之前相比较。性能退化问题暗示多个非线性网络层用于近似identity mappings 可能有困难。使用残差学习改写问题之后,如果identity mappings 是最优的,那么优化问题变得很简单,直接将多层非线性网络参数趋0。

实际中,identity mappings 不太可能是最优的,但是上述改写问题可能对问题提供有效的预先处理 (provide reasonable preconditioning)。如果最优函数接近identity mappings,那么优化将会变得容易些。 实验证明该思路是对的。
3.2. Identity Mapping by Shortcuts
图2为一个模块。A building block
resnet2
公式定义如下:
resnet5
这里假定输入输出维数一致,如果不一样,可以通过 linear projection 转成一样的。这种short connection 实际上是卷积之后的output与input的逐点加和,这句就需要二者具有相同的维度,但是由于采样的原因使得很多时候并不能满足,通常有三种方法可以解决上述问题。

3.3. Network Architectures
resnet3
resnet4
Plain Network 主要是受 VGG 网络启发,主要采用3*3滤波器,遵循两个设计原则:1)对于相同输出特征图尺寸,卷积层有相同个数的滤波器,2)如果特征图尺寸缩小一半,滤波器个数加倍以保持每个层的计算复杂度。通过步长为2的卷积来进行降采样。一共34个权重层。
需要指出,我们这个网络与VGG相比,滤波器要少,复杂度要小。

Residual Network 主要是在 上述的 plain network上加入 shortcut connections

3.4. Implementation
针对 ImageNet网络的实现,我们遵循【21,41】的实践,图像以较小的边缩放至[256,480],这样便于 scale augmentation,然后从中随机裁出 224*224,采用【21,16】文献的方法。

参考:http://blog.csdn.net/cv_family_z/article/details/50328175
http://blog.csdn.net/u014114990/article/details/50505331
http://m.blog.csdn.net/article/details?id=60468237

posted on 2017-10-24 23:11  MissSimple  阅读(289)  评论(0编辑  收藏  举报

导航