Matplotlib踩过的坑

笔记:

例一:为了方便数据更加明显,想在柱状图上添加数值信息,起初的代码

df['num'] = 1
grouped = df.groupby("location")            #以地区进行分组
com_avg = grouped.agg({"num":"count", "price":"mean"}).sort_values("num", ascending=False)    #统计数量和单价
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
width=0.4
x = np.arange(20)
num = com_avg.num
avg_pri = com_avg.price

num.plot.bar(position=0, secondary_y=True, color="g", width=0.4, ax=ax, alpha=0.7)    #position:表示绘图区域位置    secondary_y=True 可以绘制双y轴
avg_pri.plot.bar(position=1, color="r", width=0.4, ax=ax, alpha=0.7)

ax.grid(linestyle='-', linewidth=1,alpha=0.3)
plt.show()

对代码进行加数值:

#添加数值函数
def autolabel(rects):
for rect in rects: height = rect.get_height() plt.text(rect.get_x()+rect.get_width()/2.-0.2, 1.03*height, '%s' % float(height)) df['num'] = 1 grouped = df.groupby("location") #以地区进行分组 top20_com_avg = grouped.agg({"num":"count", "price":"mean"}).sort_values("num", ascending=False) #统计数量和单价 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) width=0.4 x = np.arange(20) num = top20_com_avg.num avg_pri = top20_com_avg.price a = num.plot.bar(position=0, secondary_y=True, color="g", width=0.4, ax=ax, alpha=0.7) #position:坐标轴 b = avg_pri.plot.bar(position=1, color="r", width=0.4, ax=ax, alpha=0.7) autolabel(a) ax.grid(linestyle='-', linewidth=1,alpha=0.3) plt.show()

发现报了个类型的错误错:

  

 后面经过长时间的了解 ,发现是画图上的错误

  

  a = num.plot.bar(position=0, secondary_y=True, color="g", width=0.4, ax=ax, alpha=0.7)     #position:坐标轴
  print(type(a))

  <class 'matplotlib.axes._subplots.AxesSubplot'>

正确的是:

  a = plt.bar(n,avg_pri.values,width=width,tick_label=n,fc='r')
  print(type(a))

  <class 'matplotlib.container.BarContainer'>

 

 可能是我们声明画图时使用不同的方法

正确代码:

df['num'] = 1
grouped = df.groupby("location")

com_avg = grouped.agg({"num":"count", "price":"mean"}).sort_values("num", ascending=False)

def autolabel(rects):
    for rect in rects:
        height = rect.get_height()
        plt.text(rect.get_x()+rect.get_width()/2.-0.2, 1.03*height, '%s' % int(height))

width=0.4
x = np.arange(20)
num = com_avg.num
n = np.arange(len(num)).tolist()
avg_pri = com_avg.price

a = plt.bar(n,avg_pri.values,width=width,tick_label=n,fc='r')for i in range(len(n)): n[i] = n[i] + width b = plt.bar(n,num.values,width=width,fc='g') autolabel(a) autolabel(b) plt.show()

 

posted @ 2020-02-25 23:01  cmap  阅读(820)  评论(0编辑  收藏  举报