「BZOJ2127」happiness(最小割)

题目描述

高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友。这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值。

作为计算机竞赛教练的scp大老板,想知道如何分配可以使得全班的喜悦值总和最大。

输入输出格式

输入格式:

 

第一行两个正整数n,m。

接下来是六个矩阵

  • 第一个矩阵为n行m列

此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择文科获得的喜悦值。

  • 第二个矩阵为n行m列

此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择理科获得的喜悦值。

  • 第三个矩阵为n-1行m列

此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择文科获得的额外喜悦值。

  • 第四个矩阵为n-1行m列

此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i+1行第j列的同学同时选择理科获得的额外喜悦值。

  • 第五个矩阵为n行m-1列

此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择文科获得的额外喜悦值。

  • 第六个矩阵为n行m-1列

此矩阵的第i行第j列的数字表示座位在第i行第j列的同学与第i行第j+1列的同学同时选择理科获得的额外喜悦值。

 

输出格式:

 

输出一个整数,表示喜悦值总和的最大值

 

输入输出样例

输入样例#1: 复制
1 2
1 1
100 110
1
1000
输出样例#1: 复制
1210

说明

【样例说明】

两人都选理,则获得100+110+1000的喜悦值。

对于100%以内的数据,n,m<=100 所有喜悦值均为小于等于5000的非负整数

题解

 额,这题最重要的是一个模型转换的思想。因为最小割可以代表选择或不选择,那么我们就让每一个最小割的状态分别代表题目所示的每一个状态

  先考虑建图,假设$A$和$B$是有关联的两点,那么建如下的图

 

  其中$S$表示源点,代表文科,$T$表示汇点,代表理科,$A,B$是互相关联的两点。这张图的意思是,如果某个点与$S$相连,代表它选择文科,如果与$T$相连,代表它选择理科

  那么我们考虑一下,要怎么样才能使全文,全理,一文一理三种情况都能出现呢?

  我们考虑图中边的流量,a=A文+AB文/2,c=B文+AB文/2,b=A理+AB理/2,d=B理+AB理/2,e=f=AB文/2+AB理/2

  因为最小割的割可以代表选择,所以我们可以通过枚举割来枚举选择。那么上图中是不是每一个割都代表了一种选择呢?

  我们设sum=A文+B文+A理+B理+AB文+AB理

  当两人都选文时,我们割去b,d,那么割的大小为A理+B理+AB理,用sum减去割剩下的就是全选文的高兴值

  如果两人都选理,那么我们割去a,c,和上面一个一样,就不多说

  如果两人一文一理怎么办呢?我们假设A文B理,割去a,f,d,那么sum减去割的大小就是A选文和B选理的高兴值

  综上所述,不难发现上图的每一个割都代表了一种选择的状态。那么我们要令高兴值最大,那么割必须最小,只要求出一个最小割就行了

  代码参考(抄)了hzwer的

  1 // luogu-judger-enable-o2
  2 //minamoto
  3 #include<iostream>
  4 #include<cstdio>
  5 #include<cstring>
  6 #include<queue>
  7 #define inf 0x3f3f3f3f
  8 using namespace std;
  9 #define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
 10 char buf[1<<21],*p1=buf,*p2=buf;
 11 inline int read(){
 12     #define num ch-'0'
 13     char ch;bool flag=0;int res;
 14     while(!isdigit(ch=getc()))
 15     (ch=='-')&&(flag=true);
 16     for(res=num;isdigit(ch=getc());res=res*10+num);
 17     (flag)&&(res=-res);
 18     #undef num
 19     return res;
 20 }
 21 const int N=10005,M=500005;
 22 int head[N],Next[M],ver[M],edge[M],tot=1;
 23 int dep[N],cur[N],n,m,s,t,mxflow;
 24 int a[105][105],b[105][105],id[105][105],ans;
 25 queue<int> q;
 26 inline void add_edge(int u,int v,int e){
 27     ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
 28 }
 29 inline void ins(int u,int v,int e){
 30     add_edge(u,v,e),add_edge(v,u,e);
 31 }
 32 inline void insert(int u,int v,int e){
 33     add_edge(u,v,e),add_edge(v,u,0);
 34 }
 35 bool bfs(){
 36     memset(dep,-1,sizeof(dep));
 37     while(!q.empty()) q.pop();
 38     for(int i=s;i<=t;++i) cur[i]=head[i];
 39     q.push(s),dep[s]=0;
 40     while(!q.empty()){
 41         int u=q.front();q.pop();
 42         for(int i=head[u];i;i=Next[i]){
 43             int v=ver[i];
 44             if(dep[v]<0&&edge[i]){
 45                 dep[v]=dep[u]+1,q.push(v);
 46                 if(v==t) return true;
 47             }
 48         }
 49     }
 50     return false;
 51 }
 52 int dfs(int u,int limit){
 53     if(u==t||!limit) return limit;
 54     int flow=0,f;
 55     for(int i=cur[u];i;i=Next[i]){
 56         int v=ver[i];cur[u]=i;
 57         if(dep[v]==dep[u]+1&&(f=dfs(v,min(limit,edge[i])))){
 58             flow+=f,limit-=f;
 59             edge[i]-=f,edge[i^1]+=f;
 60             if(!limit) break;
 61         }
 62     }
 63     if(!flow) dep[u]=-1;
 64     return flow;
 65 }
 66 void dinic(){
 67     while(bfs()) mxflow+=dfs(s,inf);
 68 }
 69 void build(){
 70     int x;s=0,t=n*m+1;
 71     for(int i=1;i<n;++i)
 72     for(int j=1;j<=m;++j){
 73         x=read(),ans+=x;
 74         a[i][j]+=x,a[i+1][j]+=x;
 75         ins(id[i][j],id[i+1][j],x);
 76     }
 77     for(int i=1;i<n;++i)
 78     for(int j=1;j<=m;++j){
 79         x=read(),ans+=x;
 80         b[i][j]+=x,b[i+1][j]+=x;
 81         ins(id[i][j],id[i+1][j],x);
 82     }
 83     for(int i=1;i<=n;++i)
 84     for(int j=1;j<m;++j){
 85         x=read(),ans+=x;
 86         a[i][j]+=x,a[i][j+1]+=x;
 87         ins(id[i][j],id[i][j+1],x);
 88     }
 89     for(int i=1;i<=n;++i)
 90     for(int j=1;j<m;++j){
 91         x=read(),ans+=x;
 92         b[i][j]+=x,b[i][j+1]+=x;
 93         ins(id[i][j],id[i][j+1],x);
 94     }
 95     for(int i=1;i<=n;++i)
 96     for(int j=1;j<=m;++j){
 97         insert(s,id[i][j],a[i][j]);
 98         insert(id[i][j],t,b[i][j]);
 99     }
100 }
101 int main(){
102     //freopen("testdata.in","r",stdin);
103     n=read(),m=read();
104     for(int i=1;i<=n;++i)
105     for(int j=1;j<=m;++j)
106     a[i][j]=read(),ans+=a[i][j],a[i][j]<<=1;
107     for(int i=1;i<=n;++i)
108     for(int j=1;j<=m;++j)
109     b[i][j]=read(),ans+=b[i][j],b[i][j]<<=1;
110     for(int i=1;i<=n;++i)
111     for(int j=1;j<=m;++j)
112     id[i][j]=(i-1)*m+j;
113     build(),dinic();
114     printf("%d\n",ans-(mxflow>>1));
115     return 0;
116 }

 

posted @ 2018-09-01 13:22  bztMinamoto  阅读(358)  评论(0编辑  收藏  举报
Live2D