Lucas卢卡斯定理

  当$p$为素数时

  $$C_n^m\equiv C_{n/p}^{m/p}*C_{n\%p}^{m\%p}(mod\ p)$$

  设$n=s*p+q,m\equiv t*p+r(q,r<=p)$

  我们要证$C_{s*p+q}^{t*p+r}\equiv C_s^t*C_q^r$

  首先得有个前置知识,费马小定理$x^p\equiv x(mod\ p)$

  那么$(x+1)^p\equiv x+1(mod\ p)$

  且$x^p+1\equiv x+1(mod\ p)$

  所以$(x+1)^p\equiv x^p+1$

  然后$(x+1)^n\equiv (x+1)^{s*p+q}$

  $\equiv ((x+1)^p)^s*(x+1)^q$

  $\equiv (x^p+1)^s*(x+1)^q$

  然后用二项式定理展开

  $\equiv \sum _{i=0}^s C_s^i*x^{i*p}*\sum_{j=0}^qC_q^j*x^j$

  总之就是$(x+1)^p\equiv \sum _{i=0}^s C_s^i*x^{i*p}*\sum_{j=0}^qC_q^j*x^j$

  然后考虑把两边的多项式展开一下

  那么两边肯定都有$x^m$即$x^{t*p+r}$这一项(这是最上面的假设)

  左边的$x^m$的系数,根据上面的性质4推出来,应该是$C_n^m$

  然后右边嘞?只有$i=t,j=r$的时候才会有这一项,所以这一项的系数就是$C_s^t*C_q^r$

  然后又因为$s=n/p,t=n\%p,q=m/p,r=m\%p$

  然后就能证明$C_n^m\equiv C_{n/p}^{m/p}*C_{n\%p}^{m\%p}(mod\ p)$

  然而万一$q<r$该怎么办?那样的话$j$根本不可能等于$r$啊?

  所以那样的话答案就是$0$

  因为上面乘上$C_{n\%p}^{m\%p}$答案就是$0$

  如何证明?

  我们设$f=n-m=z*p+x$

  因为$r>t,x+r\equiv t(mod\ p)$

  所以$x+r=p+t$

  又因为$z*p+x+q*p+r=s*p+t$

  所以$z+q=s-1$

  那么带进通项公式$C_n^m=\frac {n!}{m!*f!}$之后,分子中有$s$个$p$的倍数(不考虑有$p^2$之类的,因为下面有的话上面肯定也有),分母中有$s-1$个$p$的倍数,抵消之后分子中还有一个$p$,那么这个数就是$p$的倍数,模$p$肯定余$0$啦

  累死我了……

 1 // luogu-judger-enable-o2
 2 //minamoto
 3 #include<iostream>
 4 #include<cstdio>
 5 #define ll long long
 6 using namespace std;
 7 #define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
 8 char buf[1<<21],*p1=buf,*p2=buf;
 9 inline ll read(){
10     #define num ch-'0'
11     char ch;bool flag=0;ll res;
12     while(!isdigit(ch=getc()))
13     (ch=='-')&&(flag=true);
14     for(res=num;isdigit(ch=getc());res=res*10+num);
15     (flag)&&(res=-res);
16     #undef num
17     return res;
18 }
19 const int N=100005;
20 ll n,m,p;
21 ll fac[N],inv[N];
22 void init(){
23     fac[0]=1;
24     for(int i=1;i<=p;++i)
25     fac[i]=fac[i-1]*i%p;
26 }
27 ll qpow(ll a,ll b){
28     ll res=1;
29     while(b){
30         if(b&1) res=res*a%p;
31         b>>=1,a=a*a%p;
32     }
33     return res;
34 }
35 ll C(ll n,ll m){
36     if(m>n) return 0;
37     return fac[n]*qpow(fac[m]*fac[n-m],p-2)%p;
38 }
39 ll Lucas(ll n,ll m){
40     if(m==0) return 1;
41     return Lucas(n/p,m/p)*C(n%p,m%p)%p;
42 }
43 int main(){
44     int T=read();
45     while(T--){
46         n=read(),m=read(),p=read();
47         init();
48         printf("%lld\n",Lucas(m+n,m));
49     }
50     return 0;
51 }

 

posted @ 2018-08-23 11:21  bztMinamoto  阅读(515)  评论(0编辑  收藏  举报
Live2D