【CF453D】 Little Pony and Elements of Harmony(FWT)

题面

传送门

\(a\)的递推公式为

\[a_i=\sum_ja_jb[count(i\oplus j)] \]

其中\(\oplus\)为异或,\(count(i)\)表示\(i\)的二进制中\(1\)的个数

给出\(a_0,b\),求\(a_t\)\(t\leq 10^{18}\)

题解

如果我们定义\(c_i=b[count(i)]\)

这显然就是个异或卷积了……因为要卷\(t\)次,所以点值表示乘起来的时候要把\(c_i\)快速幂一下

然而有个尴尬的问题就是这里的模数可能是偶数……那么我们\(IDFT\)的时候\(2\)显然没有逆元啊……

解决方法是把模数乘上\(lim\)(即\(fwt\)的数组长度),那么最后\(IDFT\)之后把所有数对\(lim\)下去整就行了

记得得用快速乘

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define dd long double
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
    R int res,f=1;R char ch;
    while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
    for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
    return res*f;
}
ll readll(){
    R ll res,f=1;R char ch;
    while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
    for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
    return res*f;
}
const int N=(1<<20)+5;
ll P;
inline ll add(R ll x,R ll y){return x+y>=P?x+y-P:x+y;}
inline ll dec(R ll x,R ll y){return x-y<0?x-y+P:x-y;}
inline ll mul(R ll x,R ll y){return x*y-(ll)((dd)x/P*y)*P;}
inline ll ksm(R ll x,R ll y){
    ll res=1;
    for(;y;y>>=1,x=mul(x,x))y&1?res=mul(res,x):0;
    return res;
}
void Fwt(ll *A,int lim,int ty){
    ll t;
    for(R int mid=1;mid<lim;mid<<=1)
        for(R int j=0;j<lim;j+=(mid<<1))
            fp(k,0,mid-1)
                A[j+k+mid]=dec(A[j+k],t=A[j+k+mid]),
                A[j+k]=add(A[j+k],t);
    if(!ty)fp(i,0,lim-1)A[i]/=lim;
}
int n,lim;ll t,a[N],c[N],sz[N],b[25];
int main(){
    n=read(),t=readll(),P=read(),lim=(1<<n),P*=lim;
    fp(i,0,lim-1)a[i]=read()%P;fp(i,0,n)b[i]=read()%P;
    fp(i,0,lim-1)c[i]=b[sz[i]=sz[i>>1]+(i&1)];
    Fwt(a,lim,1),Fwt(c,lim,1);
    fp(i,0,lim-1)a[i]=mul(a[i],ksm(c[i],t));
    Fwt(a,lim,0);
    fp(i,0,lim-1)printf("%I64d\n",a[i]);
    return 0;
}
posted @ 2019-03-23 21:34  bztMinamoto  阅读(363)  评论(0编辑  收藏  举报
Live2D