【lojg152】 乘法逆元 2(数学)
题面
题解
orz Wa自动机
这是一个可以\(O(n)\)求出\(n\)个数逆元的方案
先把所有的数做一个前缀积,记为\(s_i\)
然后我们用快速幂求出\(s_n\)的逆元,记为\(sv_n\)
因为\(sv_n\)是\(a_1\)到\(a_n\)的逆元,我们把它乘上\(a_n\),就得到了\(sv_{n-1}\)
同理可得\(sv_{1,...,n-2}\)
那么\(a_i\)的逆元就可以用\(sv_i\times s_{i-1}\)来表示了
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=5e6+5,P=1e9+7;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
int a[N],s[N],sv[N],n,res;
int main(){
// freopen("testdata.in","r",stdin);
n=read(),s[0]=1;
fp(i,1,n)a[i]=read(),s[i]=mul(s[i-1],a[i]);
sv[n]=ksm(s[n],P-2);
fd(i,n,2)sv[i-1]=mul(sv[i],a[i]);
fp(i,1,n)res=(1ll*res*998244353+1ll*sv[i]*s[i-1])%P;
printf("%d\n",res);
return 0;
}
深深地明白自己的弱小