jzoj6004. 【PKUWC2019模拟2019.1.17】集合 (组合数学)
题面
题解
这种题目就是要好好推倒
我们枚举最小的数是哪一个,那么答案就是$$Ans=\sum_{i=1}nTi{n-i\choose k-1}$$
因为有$$\sum_{i=p}^n{n-i\choose k-1}={n-p+1\choose k}$$
原式太难算了,我们可以先计算\(\sum_{i=1}^nT{n-i\choose k-1}=T\times {n\choose k}\),再加上\(\sum_{i=2}^n(T^2-T){n-i\choose k-1}=(T^2-T)\times {n-1\choose k}\),就这样拆开来然后一直加下去,于是答案可以化为$$Ans={n\choose k}+\sum_{i=1}n(Ti-T^{i-1}){n-i+1\choose k}$$
前面加的那个\({n\choose k}\)是因为后面算的时候多减了要加回去
继续推倒$$Ans={n\choose k}+(T-1)\sum_{i=1}nT$$
然后我们考虑枚举\(i-1\)
后面上界写成\(n\)没关系,因为\(k\geq 1\),所以当\(i\)取到\(n\)的时候后面的\({0\choose k}\)为\(0\)
我们记$$A_k=\sum_{i=1}nTi{n-i\choose k}$$
因为答案的两种表现形式是一样的,所以他们是相等的,即有$$A_{k-1}={n\choose k}+(T-1)A_k+(T-1){n\choose k}$$
整理之后有$$A_k=\frac{A_{k-1}-T\times {n\choose k}}{T-1}$$
边界条件为\(A_0\),代入之后发现\(A_0\)是个等比数列求和的形式,所以有$$A_0=\frac{T(1-T^n)}{1-T}$$
预处理一下逆元,直接\(O(k)\)递推就行了,最后的答案是$$Ans=\frac{A_{k-1}}{{n\choose k}}$$
注意特判\(T=1\)的情况,答案就是\(1\)
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=1e7+5,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int inv[N],A[N],n,k,T,invt,res=1;
int main(){
// freopen("testdata.in","r",stdin);
freopen("set.in","r",stdin);
freopen("set.out","w",stdout);
scanf("%d%d%d",&n,&k,&T);
inv[0]=inv[1]=1;fp(i,2,k)inv[i]=1ll*inv[P%i]*(P-P/i)%P;
if(T==1)return puts("1"),0;
A[0]=mul(T,dec(1,ksm(T,n))),A[0]=mul(A[0],ksm(dec(1,T),P-2));
invt=ksm(T-1,P-2);
fp(i,1,k){
res=1ll*res*inv[i]%P*(n-i+1)%P;
A[i]=dec(A[i-1],mul(T,res));
A[i]=mul(A[i],invt);
}
printf("%d\n",mul(A[k-1],ksm(res,P-2)));
return 0;
}