P5135 painting(组合数)
如果\(op==1\),那么每一个方案都可以看做从\(n\)个数里选出\(m\)个数,然后\(sort\)一下依次放到每列,方案数就是\({n\choose m}\)。因为\(n\)很大,但是\(m\)不大,所以可以直接计算\(\prod_{i=n-m+1}^ni\),以及\(m\)的阶乘的逆元
如果\(op==0\),我们枚举不同的列的个数\(i\),那么选的方法有\({n\choose i}\),然后相当于是把\(m\)分成\(i\)段连续的数,也就是\(i\)个数相加和为\(m\)的非负整数解的个数,为\({m-1\choose i-1}\),于是方案数为\(\sum_{i=1}^{min(n,m)}{n\choose i}{m-1\choose i-1}\),从\({n\choose i}\)到\({n\choose i+1}\)可以\(O(1)\)计算
//minamoto
#include<bits/stdc++.h>
#define R register
#define int long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1e6,P=1e9+7;
int inv[N+5],fac[N+5],ifac[N+5],n,m,op,res,qaq;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int mul(R int x,R int y){return (x%P)*(y%P)%P;}
inline int C(R int n,R int m){return fac[n]*ifac[m]%P*ifac[n-m]%P;}
void init(){
inv[0]=inv[1]=1;
fp(i,2,N)inv[i]=mul(inv[P%i],P-P/i);
fac[0]=ifac[0]=1;
fp(i,1,N)fac[i]=mul(fac[i-1],i),ifac[i]=mul(ifac[i-1],inv[i]);
}
signed main(){
// freopen("testdata.in","r",stdin);
int T=read();init();
while(T--){
n=read(),m=read(),op=read();
if(op==1){
if(m>n)puts("0");
else{
res=1;
fp(i,n-m+1,n)res=mul(res,i%P);
res=mul(res,ifac[m]);
printf("%lld\n",res);
}
}else{
res=0,qaq=n%P;
fp(i,1,min(m,n)){
res=add(res,mul(qaq,C(m-1,i-1)));
// printf("%lld\n",mul(qaq,C(m-1,i-1)));
qaq=qaq*inv[i+1]%P*((n-i)%P)%P;
}printf("%lld\n",res);
}
}return 0;
}
深深地明白自己的弱小