time limit per test
2 secondsmemory limit per test
256 megabytesinput
standard inputoutput
standard outputYou are given two integers n and k. Find k-th smallest divisor of n, or report that it doesn't exist.
Divisor of n is any such natural number, that n can be divided by it without remainder.
Input
The first line contains two integers n and k (1 ≤ n ≤ 1015, 1 ≤ k ≤ 109).
Output
If n has less than k divisors, output -1.
Otherwise, output the k-th smallest divisor of n.
Examples
Input
4 2
Output
2
Input
5 3
Output
-1
Input
12 5
Output
6
Note
In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2.
In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
题意:求n的第k个约数。
首先可以求得小于等于根号n的约数,如果k比较小的话直接输出即可
而其他约数均为n/小于根号n的约数,所以数量为2倍。对于根号n为整数的再做个特判即可。
时间复杂度O(sqrt(n));
#include<cstdio> #include<vector> using namespace std; typedef long long ll; vector<int>x; int main() { ll n; int k; scanf("%lld%d",&n,&k); for(ll i=1;i*i<=n;++i) if(n%i==0) x.push_back(i); if(x.size()>=k) printf("%d",x[k-1]); else { int l=x.size(),sf=(ll)x[l-1]*x[l-1]==n; if(k>l*2-sf) printf("-1"); else printf("%lld",n/(ll)x[2*l-k-sf]); } return 0; }