有向图强连通分量 Tarjan算法

[有向图强连通分量]

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

wps_clip_image-24103

 

大体来说有3中算法Kosaraju,Trajan,Gabow这三种!后续文章中将相继介绍,首先介绍Tarjan算法

 

[Tarjan算法]

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

 

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。

 

算法伪代码如下

tarjan(u) 
{

    DFN[u]=Low[u]=++Index     // 为节点u设定次序编号和Low初值

    Stack.push(u)                     // 将节点u压入栈中

    for each (u, v) in E               // 枚举每一条边

          if (v is not visted)          // 如果节点v未被访问过

                  tarjan(v)              // 继续向下找

                  Low[u] = min(Low[u], Low[v])

            else if (v in S)            // 如果节点v还在栈内

            Low[u] = min(Low[u], DFN[v])

    if (DFN[u] == Low[u])        // 如果节点u是强连通分量的根

       repeat

           v = S.pop                  // 将v退栈,为该强连通分量中一个顶点

           print v

      until (u== v)

}

 

 

接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

wps_clip_image-16442

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

wps_clip_image-24939

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

wps_clip_image-17734

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

wps_clip_image-10846

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。

求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意。

 

#include "cstdlib" 
#include "cctype" 
#include "cstring" 
#include "cstdio" 
#include "cmath" 
#include "algorithm" 
#include "vector" 
#include "string" 
#include "iostream" 
#include "sstream" 
#include "set" 
#include "queue" 
#include "stack" 
#include "fstream" 
#include "strstream" 
using namespace std;

#define  M 2000              //题目中可能的最大点数       
int STACK[M],top=0;          //Tarjan 算法中的栈 
bool InStack[M];             //检查是否在栈中 
int DFN[M];                  //深度优先搜索访问次序 
int Low[M];                  //能追溯到的最早的次序 
int ComponetNumber=0;        //有向图强连通分量个数 
int Index=0;                 //索引号 
vector <int> Edge[M];        //邻接表表示 
vector <int> Component[M];   //获得强连通分量结果

void Tarjan(int i) 

    int j; 
    DFN[i]=Low[i]=Index++; 
    InStack[i]=true; 
    STACK[++top]=i; 
    for (int e=0;e<Edge[i].size();e++) 
    { 
        j=Edge[i][e]; 
        if (DFN[j]==-1) 
        { 
            Tarjan(j); 
            Low[i]=min(Low[i],Low[j]); 
        } 
        else if (InStack[j]) 
            Low[i]=min(Low[i],DFN[j]); 
    } 
    if (DFN[i]==Low[i]) 
    { 
        cout<<"TT    "<<i<<"   "<<Low[i]<<endl; 
        ComponetNumber++; 
        do 
        { 
            j=STACK[top--]; 
            InStack[j]=false; 
            Component[ComponetNumber].push_back(j); 
        } 
        while (j!=i); 
    } 
}

void solve(int N)     //此图中点的个数,注意是0-indexed! 

    memset(STACK,-1,sizeof(STACK)); 
    memset(InStack,0,sizeof(InStack)); 
    memset(DFN,-1,sizeof(DFN)); 
    memset(Low,-1,sizeof(Low)); 
    for(int i=0;i<N;i++) 
        if(DFN[i]==-1) 
            Tarjan(i);    

/* 
此算法正常工作的基础是图是0-indexed的。 
*/ 
int main() 

    Edge[0].push_back(1);Edge[0].push_back(2); 
    Edge[1].push_back(3); 
    Edge[2].push_back(3);Edge[2].push_back(4); 
    Edge[3].push_back(0);Edge[3].push_back(5); 
    Edge[4].push_back(5); 
    int  N=6; 
    solve(N); 
    cout<<"ComponetNumber is "<<ComponetNumber<<endl; 
    for(int i=0;i<N;i++) 
        cout<<Low[i]<<" "; 
    cout<<endl; 
    for(int i=0;i<N;i++) 
    { 
        for(int j=0;j<Component[i].size();j++) 
            cout<<Component[i][j]; 
        cout<<endl; 
    } 
    return 0; 
}

 

posted on 2016-07-31 15:08  比特飞流  阅读(193)  评论(0编辑  收藏  举报

导航