爬楼梯问题-斐波那契序列的应用.md
-
- N 阶楼梯,一次可以爬1、2步,求爬楼梯的种类数 ------ 斐波那契序列
-
- 变形:N 阶楼梯,一次可以爬1、2、3...n步,求爬楼梯的种类数 ------- 2的阶乘
/**
* 一次爬1\2步,所求结果是斐波那契序列
*
*/
public class ClimbingStairs {
// Sol 1: 递归 ,超时
// 递归 公式:F(n) = F(n - 1) + F(n - 2),n>=2; F(1) = 1, F(0) = 0;
// Time: O(1.618 ^ n) Space: O(n) 空间复杂度取决于递归的深度
public int climbStairs1(int n) {
if (n < 2)
return 1;
else
return climbStairs1(n - 1) + climbStairs1(n - 2);
}
// Sol 2: 迭代
// Time: O(n) Space: O(1)
public int climbStairs(int n) {
int prev = 0, curr = 1;
for (int i = 0; i < n; i++) {
int tmp = curr;
curr += prev;
prev = tmp;
}
return curr;
}
// Sol 3: 数学公式, 见笔记
// Time: O(n) Space: O(1)
public int climbStairs3(int n) {
final double s = Math.sqrt(5);
return (int) ((Math.pow((1 + s) / 2, n + 1) - Math.pow((1 - s) / 2, n + 1)) * (1.0 / s));
}
/**
* 变形:如果每次可怕的步数是1\2\3\...\n
* f(1) = 1
* f(2) = 2
* f(3) = 4
* f(4) = 8
* f(5) = 32
* f(6) = 64
* f(n) = f(n-1) + f(n-2) + ... + f(2) + f(1)
*/
public int climStainrsN(int n) {
int result = 1;
for (int i = 1; i < n; i++) {
result = result * 2;
}
return result;
}
public static void main(String[] args) {
ClimbingStairs sol = new ClimbingStairs();
for (int i = 1; i <= 6; i++) {
System.out.println("n = " + i + ", step =" + sol.climStainrsN(i));
}
}
}
posted on 2017-04-12 19:53 BYRHuangQiang 阅读(309) 评论(0) 编辑 收藏 举报