Solution - AGC060B

Link

简要题意:在 \(n \times m\) 的方格表中填入一些不超过 \(2^k-1\) 的数。考虑所有从左上角到右下角的最短路径,要求其中满足路径上数异或和为 \(0\) 的路径只有给定的 \(S\) 一条,问是否有解。

首先,变换看问题的角度:给定 \(n,m,S\),则 \(k\) 应该存在一个最小值,使得问题有解(或总是无解),所以这其实是一个组合最值问题。那么考虑两个方面:证明和构造。

证明部分,我们要尽可能的增大 \(k\),也就是增大所需的二进制位数。那么,考虑 \(S\) 的一个拐角,如图,红线表示 \(S\),蓝线表示一个调整。

这里拐角指的是红线的拐弯处斜向相邻的这个格,即图中蓝线唯一不同与红线的格。

将红线换为蓝线之后,只改变了两个格,那么由于蓝线不能异或和为 \(0\),所以这两个格至少有一位二进制不同。

这样的调整可以在若干个地方进行,设为 \(t\) 个,第 \(i\) 个调整会使路径的异或和改变 \(v_i\)。那么,不能有若干个 \(v_i\) 的异或和为 \(0\),即 \(v_i\) 是一个线性无关组。由于 \(v_i\) 定义在 \(k\) 位二进制数上,所以 \(t \le k\)

但是,并不是每个拐角都可以调整。准确地说,不是所有拐角都可以一起调整。请看下图:

图中标出了三个拐角,但是显然不能同时做 \(1,2\) 的调整,也不能同时做 \(1,3\) 的调整。再思考一下可以发现,其实只有这样的一种情况是特殊的,也就是有一段经过两格的,连续的若干个两格只取一侧。

如此就可以算出 \(k\) 的下界,它其实就是一条路径能够经过的拐角数目的最大值,只是对于连续的两格比较特殊。

至于构造,思考到这里应该不太难了。方案如下:(想象一个人在表格中走,Ta要做一些决策)

  1. 对于一段长度大于等于 \(3\) 的直走,取新的一位,在这一段两端各添一个 \(1\)。这样可以使得走到这一段开头后必须走这一段结尾。

  2. 对于一些长度为 \(2\) 的直走,不妨设第一个 \(2\) 是竖向的,那么给每一段竖向的分配一个二进制位,在这两个格上添 \(1\)。然后取消两端由上一条添的位。

似乎说的不太清楚?上图。

在第二条规则下,有一些“必经之路”会被挡住,所以必须要经过所有安排的 \(1\)

容易验证这个构造确实取到了前面证明的最值。

AGC 传统,思路难,代码易。请看 Code:

#include<bits/stdc++.h>
using namespace std;
int T,n,m,k,cnt,x,y,lstx,lsty;
//x,y跟着路径S跑
//lstx,lsty表示上一个选中的拐角
char s[65];
int main(){
	scanf("%d",&T);
	while(T--){
		scanf("%d%d%d",&n,&m,&k);
		scanf("%s",s+1);
		cnt=0;x=y=lstx=lsty=1;
		for(int i=1;i<n+m-2;i++){
			if(s[i]=='D')x++;else y++;
			if(s[i]!=s[i+1]){
				if(s[i]=='D'&&lstx<=x-1&&lsty<=y+1)
					cnt++,lstx=x-1,lsty=y+1;
				if(s[i]=='R'&&lstx<=x+1&&lsty<=y-1)
					cnt++,lstx=x+1,lsty=y-1;
			}
		}
		printf(cnt<=k?"Yes\n":"No\n");
	}
	return 0;
}

posted @ 2023-03-07 21:51  by_chance  阅读(17)  评论(0编辑  收藏  举报