三角函数恒等变形

基本性质

\[\sin^2\alpha+\cos^2\alpha=1 \]

\[\tan\alpha=\frac{\sin\alpha}{\cos\alpha} \]

和差角公式

\[\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta \]

\[\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta \]

\[\tan(\alpha\pm\beta)=\frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta} \]

二倍角公式

\[\sin2\alpha=2\sin\alpha\cos\alpha \]

\[\cos2\alpha=\cos^2\alpha-\sin^2\alpha=1-2\sin^2\alpha=2\cos^2\alpha-1 \]

\[\tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha} \]

降幂公式

\[\sin\alpha\cos\alpha=\frac12\sin2\alpha \]

\[\sin^2\alpha=\frac{1-\cos2\alpha}2 \]

\[\cos^2\alpha=\frac{1+\cos2\alpha}2 \]

一点也不万能的公式

\[\sin\alpha=\frac{2\tan\frac\alpha2}{1+\tan^2\frac\alpha2} \]

\[\cos\alpha=\frac{1-\tan^2\frac\alpha2}{1+\tan^2\frac\alpha2} \]

积化和差

\[\sin\alpha\cos\beta=\frac12\left[\sin(\alpha+\beta)+\sin(\alpha-\beta)\right] \]

\[\cos\alpha\sin\beta=\frac12\left[\sin(\alpha+\beta)-\sin(\alpha-\beta)\right] \]

\[\sin\alpha\sin\beta=-\frac12\left[\cos(\alpha+\beta)-\cos(\alpha-\beta)\right] \]

\[\cos\alpha\cos\beta=\frac12\left[\cos(\alpha+\beta)+\cos(\alpha-\beta)\right] \]

\[\tan\alpha\tan\beta=1-\frac{\tan\alpha+\tan\beta}{\tan(\alpha+\beta)}=\frac{\tan\alpha-\tan\beta}{\tan(\alpha-\beta)}-1 \]

和差化积

\[\sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}2\cos\frac{\alpha-\beta}2 \]

\[\sin\alpha-\sin\beta=2\cos\frac{\alpha+\beta}2\sin\frac{\alpha-\beta}2 \]

\[\cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}2\cos\frac{\alpha-\beta}2 \]

\[\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}2\sin\frac{\alpha-\beta}2 \]

\[\tan\alpha\pm\tan\beta=\tan(\alpha\pm\beta)(1\mp\tan\alpha\tan \beta) \]

杂题

\[\begin{align*} &\cos75°\\ ={}&\cos(30°+45°)\\ ={}&\cos30°\cos45°-\sin30°\sin45°\\ ={}&\frac{\sqrt3}2\times\frac{\sqrt2}2-\frac12\times\frac{\sqrt2}2\\ ={}&\frac{\sqrt6-\sqrt2}2 \end{align*} \]

\[\begin{align*} &\sin105°\\ ={}&\sin(45°+60°)\\ ={}&\sin45°\cos60°+\cos45°\sin60°\\ ={}&\frac{\sqrt2}2\times\frac12+\frac{\sqrt2}2\times\frac{\sqrt3}2\\ ={}&\frac{\sqrt6+\sqrt2}2 \end{align*} \]

\[\begin{align*} &\cos61°\cos16°+\sin61°\sin16°\\ ={}&\cos(61°-16°)\\ ={}&\cos45°\\ ={}&\frac{\sqrt2}2 \end{align*} \]

\[\begin{align*} &\sin13°\cos17°+\cos13°\sin17°\\ ={}&\sin(13°+17°)\\ ={}&\sin30°\\ ={}&\frac12 \end{align*} \]

\[\begin{align*} &\sin163°\sin223°+\sin253°\sin313°\\ ={}&\sin163°\sin223°+\sin(163°+90°)\sin(223°+90°)\\ ={}&\sin163°\sin223°+\cos163°\cos223°\\ ={}&\cos(223°-163°)\\ ={}&\cos(-60°)\\ ={}&\cos60°\\ ={}&\frac12 \end{align*} \]

\[\begin{align*} &\cos43°\cos77°+\sin43°\cos167°\\ ={}&\cos43°\cos77°+\sin43°\cos(77°+90°)\\ ={}&\cos43°\cos77°-\sin43°\sin77°\\ ={}&\cos(43°+77°)\\ ={}&\cos120°\\ ={}&-\sin30°\\ ={}&-\frac12\\ \end{align*} \]

\[\begin{align*} &\frac{\sin7°+\cos15°\sin8°}{\cos7°-\sin15°\sin8°}\\ ={}&\frac{\sin(15°-8°)+\cos15°\sin8°}{\cos(15°-8°)-\sin15°\sin8°}\\ ={}&\frac{\sin15°\cos8°-\cos15°\sin8°+\cos15°\sin8°}{\cos15°\cos8°+\sin15°\sin8°-\sin15°\sin8°}\\ ={}&\frac{\sin15°\cos8°}{\cos15°\cos8°}\\ ={}&\tan15°\\ ={}&\tan(45°-30°)\\ ={}&\frac{\tan45°-\tan30°}{1+\tan45°\tan30°}\\ ={}&\frac{1-\frac{\sqrt3}3}{1+1\times\frac{\sqrt3}3}\\ ={}&2-\sqrt3\\ \end{align*} \]

\[\begin{align*} &\frac{1+\tan75°}{1-\tan75°}\\ ={}&\frac{\tan45°+\tan75°}{1-\tan45°\tan75°}\\ ={}&\tan(45°+75°)\\ ={}&\tan120°\\ ={}&-\tan60°\\ ={}&-\sqrt3\\ \end{align*} \]

\[\begin{align*} &\frac{\cos15°-\sin15°}{\cos15°+\sin15°}\\ ={}&\frac{1-\tan15°}{1+\sin15°}\\ ={}&\frac{\tan45°-\tan15°}{1+\tan45°\tan15°}\\ ={}&\tan30°\\ ={}&\frac{\sqrt3}3 \end{align*} \]

\[\begin{align*} &\sin15°\cos15°\\ ={}&\frac12\sin30°\\ ={}&\frac12\times\frac12\\ ={}&\frac14\\ \end{align*} \]

\[\begin{align*} &1-2\sin^275°\\ ={}&\cos(2\times75°)\\ ={}&\cos150°\\ ={}&-\cos60°\\ ={}&-\frac12\\ \end{align*} \]

\[\begin{align*} &1-2\sin^275°\\ ={}&\cos(2\times75°)\\ ={}&\cos150°\\ ={}&-\cos60°\\ ={}&-\frac12\\ \end{align*} \]

\[\begin{align*} &1-2\sin^275°\\ ={}&\cos(2\times75°)\\ ={}&\cos150°\\ ={}&-\cos60°\\ ={}&-\frac12\\ \end{align*} \]

\[\begin{align*} &\frac{2\tan150°}{1-\tan^2150°}\\ ={}&\tan(2\times150°)\\ ={}&\tan300°\\ ={}&-\tan60°\\ ={}&-\sqrt3\\ \end{align*} \]

\[\begin{align*} &\tan15°+\cot15°\\ ={}&\frac{\sin15°}{\cos15°}+\frac{\cos15°}{\sin15°}\\ ={}&\frac{\sin^215°+\cos^215°}{\sin15°\cos15°}\\ ={}&\frac1{\sin15°\cos15°}\\ ={}&\frac1{\frac12\sin30°}\\ ={}&\frac1{\frac12\times\frac12}\\ ={}&4\\ \end{align*} \]

\[\begin{align*} &\frac{2\cos10°-\sin20°}{\sin70°}\\ ={}&\frac{2\cos(30°-20°)-\sin20°}{\cos20°}\\ ={}&\frac{2(\cos30°\cos20°+\sin30°\sin20°)-\sin20°}{\cos20°}\\ ={}&\frac{2(\frac{\sqrt3}2\times\cos20°+\frac12\times\sin20°)-\sin20°}{\cos20°}\\ ={}&\frac{\sqrt3\cos20°+\sin20°-\sin20°}{\cos20°}\\ ={}&\sqrt3\\ \end{align*} \]

\[\begin{align*} &\tan20°+4\sin20°\\ ={}&\frac{\sin20°}{\cos20°}+\frac{4\sin20°\cos20°}{\cos20°}\\ ={}&\frac{\sin20°+2\sin40°}{\cos20°}\\ ={}&\frac{\sin20°+2\sin(60°-20°)}{\cos20°}\\ ={}&\frac{\sin20°+2\sin60°\cos20°-2\cos60°\sin20°}{\cos20°}\\ ={}&\frac{\sin20°+\sqrt3\cos20°-\sin20°}{\cos20°}\\ ={}&\sqrt3 \end{align*}\\ \]

\[\begin{align*} &\tan72°-\tan42°-\frac{\sqrt3}3\tan72°\tan42°\\ ={}&\tan(72°-42°)(1+\tan72°\tan42°)-\tan30°\tan72°\tan42°\\ ={}&\tan30°(1+\tan72°\tan42°)-\tan30°(\tan72°\tan42°)\\ ={}&\tan30°\\ ={}&\frac{\sqrt3}3\\ \end{align*} \]

\[\begin{align*} &\frac{\tan20°+\tan40°+\tan120°}{\tan20°\tan40°}\\ ={}&\frac{\tan60°-\tan20°\tan40°\tan60°-\tan60°}{\tan20°\tan40°}\\ ={}&-\tan60°\\ ={}&-\sqrt3\\ \end{align*} \]

\[\begin{align*} &\tan(30°-\alpha)+\tan(30°+\alpha)+\sqrt3\tan(30°-\alpha)\tan(30°+\alpha)\\ ={}&\tan(30°-\alpha+30°+\alpha)\left[1-\tan(30°+\alpha)\tan(30°-\alpha)\right]+\sqrt3\tan(30°-\alpha)\tan(30°+\alpha)\\ ={}&\sqrt3\left[1-\tan(30°+\alpha)\tan(30°-\alpha)\right]+\sqrt3\tan(30°-\alpha)\tan(30°+\alpha)\\ ={}&\sqrt3-\sqrt3\tan(30°+\alpha)\tan(30°-\alpha)+\sqrt3\tan(30°-\alpha)\tan(30°+\alpha)\\ ={}&\sqrt3\\ \end{align*} \]

\[\begin{align*} &\tan10°(3+\tan30°\tan40°+\tan40°\tan50°+\tan50°\tan60°)\\ ={}&\tan10°\left[(1+\tan30°\tan40°)+(1+\tan40°\tan50°)+(1+\tan50°\tan60°)\right]\\ ={}&\tan10°\left[(1+\frac{\tan40°-\tan30°}{\tan10°}-1)+(1+\frac{\tan50°-\tan40°}{\tan10°}-1)+(1+\frac{\tan60°-\tan50°}{\tan10°}-1)\right]\\ ={}&\tan10°(\frac{\tan40°-\tan30°}{\tan10°}+\frac{\tan50°-\tan40°}{\tan10°}+\frac{\tan60°-\tan50°}{\tan10°})\\ ={}&\tan40°-\tan30°+\tan50°-\tan40°+\tan60°-\tan50°\\ ={}&\tan60°-\tan30°\\ ={}&\tan60°-\tan30°\\ ={}&\frac{2\sqrt3}3\\ \end{align*} \]

\[\begin{align*} &\frac{\sin50°(1+\sqrt3\tan10°)-\cos20°}{\cos80°\sqrt{1-\cos20°}}\\ ={}&\frac{\sin50°(\frac{\cos10°}{\cos10°}+\frac{\sqrt3\sin10°}{\cos10°})-\cos20°}{\cos80°\sqrt{1-\cos20°}}\\ ={}&\frac{\frac{\sin50°}{\cos10°}\times(\sqrt3\sin10°+\cos10°)-\cos20°}{\cos80°\sqrt{1-\cos20°}}\\ ={}&\frac{\frac{\sin50°}{\cos10°}\times2(\frac{\sqrt3}2\sin10°+\frac12\cos10°)-\cos20°}{\cos80°\sqrt{1-\cos20°}}\\ ={}&\frac{\frac{\sin50°}{\cos10°}\times2(\cos30°\sin10°+\sin30°\cos10°)-\cos20°}{\cos80°\sqrt{1-\cos20°}}\\ ={}&\frac{\frac{\sin50°}{\cos10°}\times2\sin(30°+10°)-\cos20°}{\cos80°\sqrt{1-\cos20°}}\\ ={}&\frac{\frac{\cos40°}{\sin80°}\times2\sin40°-\cos20°}{\cos80°\sqrt{1-\cos20°}}\\ ={}&\frac{1-\cos20°}{\cos80°\sqrt{1-\cos20°}}\\ ={}&\frac{1-(1-2\sin^210°)}{\cos80°\sqrt{1-(1-2\sin^210°)}}\\ ={}&\frac{2\sin^210°}{\cos80°\sqrt{2\sin^210°}}\\ ={}&\frac{2\sin^210°}{\sqrt2\sin^210°}\\ ={}&\sqrt2\\ \end{align*} \]

\[\begin{align*} &(\tan10°-\sqrt3)\times\frac{\cos10°}{\sin50°}\\ ={}&(\tan10°-\tan60°)\times\frac{\cos10°}{\sin50°}\\ ={}&\left[\tan(10°-60°)\right](1+\tan10°\tan60°)\times\frac{\cos10°}{\sin50°}\\ ={}&-\tan50°(1+\tan10°\tan60°)\times\frac{\cos10°}{\sin50°}\\ ={}&-\tan50°(1+\sqrt3\tan10°)\times\frac{\cos10°}{\sin50°}\\ ={}&-2\tan50°(\frac12\times\frac{\cos10°}{\cos10°}+\frac{\sqrt3}2\times\frac{\sin10}{\cos10})\times\frac{\cos10°}{\sin50°}\\ ={}&-2\tan50°(\cos60°\cos10°+\sin60°\sin10)\times\frac1{\sin50°}\\ ={}&-2\tan50°(\cos60°-10°)\times\frac1{\sin50°}\\ ={}&-2\tan50°(\cos60°-10°)\times\frac1{\sin50°}\\ ={}&-2 \end{align*} \]

\[\begin{align*} &\sqrt{\sin^280°}\left[2\sin50°+\sin10°(1+\sqrt3\tan10°)\right]\\ ={}&\sqrt{\sin^280°}\left[2\sin50°+2\sin10°(\frac12+\frac{\sqrt3}2\tan10°)\right]\\ ={}&2\sqrt{\sin^280°}\left[\sin50°+\frac{\sin10°}{\cos10°}\times(\cos60°\cos10°+\sin60°\sin10°)\right]\\ ={}&2\sqrt{\sin^280°}\left[\sin50°+\frac{\sin10°}{\cos10°}\times(\cos60°-10°)\right]\\ ={}&2\cos10°(\sin50°+\tan10°\cos50°)\\ ={}&2(\sin50°\cos10°+\cos50°\sin10°)\\ ={}&2\sin(50°+10°)\\ ={}&\sqrt3\\ \end{align*} \]

\[\begin{align*} &\sqrt{1+\cos20°}\left[2\sin50°+\sin10°(1+\sqrt3\tan10°)\right]\\ ={}&\sqrt{1+\cos20°}\left[2\sin50°+2\sin10°(\frac12+\frac{\sqrt3}2\tan10°)\right]\\ ={}&2\sqrt{1+\cos20°}\left[\sin50°+\frac{\sin10°}{\cos10°}\times(\cos60°\cos10°+\sin60°\sin10°)\right]\\ ={}&2\sqrt{1+\cos20°}\left[\sin50°+\frac{\sin10°}{\cos10°}\times(\cos60°-10°)\right]\\ ={}&2\sqrt{1+\cos20°}(\sin50°+\tan10°\cos50°)\\ ={}&2\sqrt{1+2\cos^210°-1}(\sin50°+\tan10°\cos50°)\\ ={}&2\sqrt{1+2\cos^210°-1}(\sin50°+\tan10°\cos50°)\\ ={}&2\sqrt2\cos10°(\sin50°+\tan10°\cos50°)\\ ={}&2\sqrt2\sin60°\\ ={}&\sqrt6\\ \end{align*} \]

\[\begin{align*} &4\cos50°-\tan40°\\ ={}&4\sin40°-\frac{\sin40°}{\cos40°}\\ ={}&\frac{4\sin40°\cos40°-\sin40°}{\cos40°}\\ ={}&\frac{2\sin80°-\sin40°}{\cos40°}\\ ={}&\frac{2\cos10°-\sin(10°+30°)}{\cos40°}\\ ={}&\frac{2\cos10°-(\sin10°\cos30°+\cos10°\sin30°)}{\cos40°}\\ ={}&\frac{2\cos10°-(\frac{\sqrt3}2\sin10°+\frac12\cos10°)}{\cos40°}\\ ={}&\frac{\frac32\cos10°-\frac{\sqrt3}2\sin10°}{\cos40°}\\ ={}&\sqrt3\times\frac{\frac{\sqrt3}2\cos10°-\frac12\sin10°}{\cos40°}\\ ={}&\sqrt3\times\frac{\cos30°\cos10°-\sin30°\sin10°}{\cos40°}\\ ={}&\sqrt3\times\frac{\cos(30°+10°)}{\cos40°}\\ ={}&\sqrt3\\ \end{align*}\\ \]

\[\begin{align*} &\frac{\sqrt3\tan12°-3}{4\cos^212°\sin12°-2\sin12°}\\ ={}&\sqrt3\times\frac{\tan12°-\tan60°}{4\cos^212°\sin12°-2\sin12°}\\ ={}&\sqrt3\times\frac{\frac{\sin12°\cos60°-\cos12°\sin60°}{\cos12°\cos60°}}{4\cos^212°\sin12°-2\sin12°}\\ ={}&\sqrt3\times\frac{\frac{\sin(12°-60°)}{\frac12\cos12°}}{4\cos^212°\sin12°-2\sin12°}\\ ={}&\sqrt3\times\frac{\frac{-2\sin48°}{\cos12°}}{4\cos^212°\sin12°-2\sin12°}\\ ={}&\sqrt3\times\frac{-2\sin48°}{2\sin12°\cos12°(2\cos^212°-1)}\\ ={}&\sqrt3\times\frac{-2\sin48°}{\sin24°\cos24°}\\ ={}&\sqrt3\times\frac{-2\sin48°}{\frac12\sin48°}\\ ={}&-4\sqrt3\\ \end{align*} \]

\[\begin{align*} &\frac1{\sin10°}-\frac{\sqrt3}{\cos10°}\\ ={}&\frac{\cos10°-\sqrt3\sin10°}{\sin10°\cos10°}\\ ={}&2\times\frac{\frac12\cos10°-\frac{\sqrt3}2\sin10°}{\sin10°\cos10°}\\ ={}&2\times\frac{\sin30°\cos10°-\cos30°\sin10°}{\sin10°\cos10°}\\ ={}&2\times\frac{\sin(30°-10°)}{\frac12\sin20°}\\ ={}&4\\ \end{align*} \]

\[\begin{align*} &\cos^4x-2\sin x\cos x-\sin^4x\\ ={}&(\cos^2x+\sin^2x)(\cos^2x-\sin^2x)-2\sin x\cos x\\ ={}&\cos2x-\sin2x\\ ={}&\sqrt2(\frac{\sqrt2}2\cos2x-\frac{\sqrt2}2\sin2x)\\ ={}&\sqrt2(\sin\frac\pi4\cos2x-\cos\frac\pi4\sin2x)\\ ={}&\sqrt2(\sin\frac\pi4\cos2x-\cos\frac\pi4\sin2x)\\ ={}&\sqrt2\sin(\frac\pi4-2x)\\ ={}&\sqrt2\sin(2x-\frac{3\pi}4)\\ \end{align*} \]

\[\begin{align*} &\sin(x+\frac\pi6)+\sin(x-\frac\pi6)+\cos x\\ ={}&\sin(x+\frac\pi6)+\sin x\cos\frac\pi6-\cos x\sin\frac\pi6+\cos x\\ ={}&\sin(x+\frac\pi6)+\sin x\cos\frac\pi6+\cos x\sin\frac\pi6\\ ={}&\sin(x+\frac\pi6)+\sin(x+\frac\pi6)\\ ={}&2\sin(x+\frac\pi6)\\ \end{align*} \]

\[\begin{align*} &a\sin x+b\cos x\\ ={}&\sqrt{a^2+b^2}(\frac{a}{\sqrt{a^2+b^2}}\sin x+\frac{b}{\sqrt{a^2+b^2}}\cos x)\\ ={}&\sqrt{a^2+b^2}(\sin x\cos\alpha+\cos x\sin\alpha)\\ ={}&\sqrt{a^2+b^2}\sin(x+\alpha) \end{align*} \]

posted @ 2023-01-03 22:39  蒟酱  阅读(289)  评论(0编辑  收藏  举报