感知机的对偶形式——python3实现

Posted on 2016-11-18 17:11  不秩稚童  阅读(1637)  评论(0编辑  收藏  举报

  运用对偶的(对应原始)感知机算法实现线性分类。

  参考书目:《统计学习方法》(李航)

  算法原理:

 

 

  代码实现:

  环境:win7 32bit + Anaconda3 +spyder

  和原始算法的实现基本框架是类似的,只是判断和权值的更新算法有点变化。

  1 # -*- coding: utf-8 -*-
  2 """
  3 Created on Fri Nov 18 01:29:35 2016
  4 
  5 @author: Administrator
  6 """
  7 
  8 import numpy as np
  9 from matplotlib import pyplot as plt
 10 
 11 
 12 # train matrix
 13 def get_train_data():        
 14     M1 = np.random.random((100,2))
 15     # 将label加到最后,方便后面操作
 16     M11 = np.column_stack((M1,np.ones(100)))
 17     
 18     M2 = np.random.random((100,2)) - 0.7
 19     M22 = np.column_stack((M2,np.ones(100)*(-1)))
 20     # 合并两类,并将位置索引加到最后
 21     MA = np.vstack((M11,M22))
 22     MA = np.column_stack((MA,range(0,200)))
 23     
 24     # 作图操作
 25     plt.plot(M1[:,0],M1[:,1], 'ro')
 26     plt.plot(M2[:,0],M2[:,1], 'go')
 27     # 为了美观,根据数据点限制之后分类线的范围    
 28     min_x = np.min(M2)
 29     max_x = np.max(M1)
 30     # 分隔x,方便作图
 31     x = np.linspace(min_x, max_x, 100)
 32     # 此处返回 x 是为了之后作图方便
 33     return MA,x
 34 
 35 # GRAM计算
 36 def get_gram(MA):
 37     GRAM = np.empty(shape=(200,200))
 38     for i in range(len(MA)):
 39         for j in range(len(MA)):
 40             GRAM[i,j] = np.dot(MA[i,][:2], MA[j,][:2])
 41     return GRAM
 42 
 43 # 方便在train函数中识别误分类点
 44 def func(alpha,b,xi,yi,yN,index,GRAM):
 45     pa1 = alpha*yN
 46     pa2 = GRAM[:,index]
 47     num = yi*(np.dot(pa1,pa2)+b)
 48     return num
 49 
 50 # 训练training data
 51 def train(MA, alpha, b, GRAM, yN):
 52     # M 存储每次处理后依旧处于误分类的原始数据
 53     M = []
 54     for sample in MA:
 55         xi = sample[0:2]
 56         yi = sample[-2]
 57         index = int(sample[-1])
 58         # 如果为误分类,改变alpha,b
 59         # n 为学习率
 60         if func(alpha,b,xi,yi,yN,index,GRAM) <= 0:
 61             alpha[index] += n
 62             b += n*yi
 63             M.append(sample)
 64     if len(M) > 0:
 65         # print('迭代...')
 66         train(M,  alpha, b, GRAM, yN)
 67     return alpha,b
 68 
 69 # 作出分类线的图
 70 def plot_classify(w,b,x, rate0):
 71     y = (w[0]*x+b)/((-1)*w[1])
 72     plt.plot(x,y)
 73     plt.title('Accuracy = '+str(rate0))
 74 
 75 # 随机生成testing data 并作图
 76 def get_test_data():
 77     M = np.random.random((50,2))
 78     plt.plot(M[:,0],M[:,1],'*y')
 79     return M
 80 # 对传入的testing data 的单个样本进行分类
 81 def classify(w,b,test_i):
 82     if np.sign(np.dot(w,test_i)+b) == 1:
 83         return 1
 84     else:
 85         return 0
 86 
 87 # 测试数据,返回正确率
 88 def test(w,b,test_data):
 89     right_count = 0
 90     for test_i in test_data:
 91         classx = classify(w,b,test_i)
 92         if classx == 1:
 93             right_count += 1
 94     rate  = right_count/len(test_data)
 95     return rate
 96 
 97 
 98 if __name__=="__main__":
 99     MA,x= get_train_data()
100     test_data = get_test_data()
101     GRAM = get_gram(MA)
102     yN = MA[:,2]
103     xN = MA[:,0:2]
104     # 定义初始值
105     alpha = [0]*200
106     b = 0
107     n = 1
108     # 初始化最优的正确率
109     rate0 = 0
110 
111 
112 #    print(alpha,b)
113 #    循环不同的学习率n,寻求最优的学习率,即最终的rate0
114 #    w0,b0为对应的最优参数
115     for i in np.linspace(0.01,1,100):
116         n = i
117         alpha,b = train(MA, alpha, b, GRAM, yN)
118         alphap = np.column_stack((alpha*yN,alpha*yN))
119         w = sum(alphap*xN)
120         rate = test(w,b,test_data)
121         # print(w,b)
122         rate = test(w,b,test_data)
123         if rate > rate0:
124             rate0 = rate
125             w0 = w
126             b0 = b
127             print('Until now, the best result of the accuracy on test data is '+str(rate))
128             print('with w='+str(w0)+' b='+str(b0))
129             print('---------------------------------------------')
130 #     在选定最优的学习率后,作图
131     plot_classify(w0,b0,x,rate0)
132     plt.show()

  输出: