数据库的一些概念
视图
什么是视图
视图是一张虚拟表,比如内连接产生的虚拟表
保存下来,下次可以直接使用,而不是下次再重复写一下内连接
为什么要用视图
如果要频繁使用一张虚拟表,使用视图就不用重复查询
如何使用视图
关键字view 和as create view teacher2course as select * from teacher inner join course on teacher_id = teacher.tid
强调
1. 在硬盘中,视图只有表结构文件,没有表数据文件 2. 视图通常适用于查询,尽量不要修改视图中的数据 3. 一般情况下不会频繁使用视图: 开发过程中如果项目中大量使用到了视图, 那意味着后期想扩张某个功能的时候,恰巧有需要对视图进行修改; 也就意味着需要先在驶入修改,再去SQL语句修改; 也就意味着涉及跨部门沟通。
所以通常不会使用视图,而是通过重新修改SQL语句来扩展功能
触发器
什么是触发器
达到某种条件,自动触发的功能
例如对某张表的增删改时,自动触发SQL代码执行
触发器语法
固定语法结构 create trigger 触发器的名字 after/before insert/update/delete on 表名 for each row begin sql语句 end
触发器语法案例
# 针对插入 create trigger tri_after_insert_t1 after insert on 表名 for each row begin sql代码。。。 end create trigger tri_after_insert_t2 before insert on 表名 for each row begin sql代码。。。 end # 针对删除 create trigger tri_after_delete_t1 after delete on 表名 for each row begin sql代码。。。 end create trigger tri_after_delete_t2 before delete on 表名 for each row begin sql代码。。。 end # 针对修改 create trigger tri_after_update_t1 after update on 表名 for each row begin sql代码。。。 end create trigger tri_after_update_t2 before update on 表名 for each row begin sql代码。。。 end # 案例 CREATE TABLE cmd ( id INT PRIMARY KEY auto_increment, USER CHAR (32), priv CHAR (10), cmd CHAR (64), sub_time datetime, #提交时间 success enum ('yes', 'no') #0代表执行失败 ); CREATE TABLE errlog ( id INT PRIMARY KEY auto_increment, err_cmd CHAR (64), err_time datetime ); delimiter $$ # 将mysql默认的结束符由;换成$$ create trigger tri_after_insert_cmd after insert on cmd for each row begin if NEW.success = 'no' then # 新记录都会被MySQL封装成NEW对象 insert into errlog(err_cmd,err_time) values(NEW.cmd,NEW.sub_time); end if; end $$ delimiter ; # 结束之后记得再改回来,不然后面结束符就都是$$了 # 往表cmd中插入记录,触发触发器,根据IF的条件决定是否插入错误日志 INSERT INTO cmd ( USER, priv, cmd, sub_time, success ) VALUES ('egon','0755','ls -l /etc',NOW(),'yes'), ('egon','0755','cat /etc/passwd',NOW(),'no'), ('egon','0755','useradd xxx',NOW(),'no'), ('egon','0755','ps aux',NOW(),'yes'); # 查询errlog表记录 select * from errlog; # 删除触发器 drop trigger tri_after_insert_cmd;
事务
什么是事务
开启一个事务可以包含一些SQL语句,
这些语句要么同时成功执行,要么同时不执行(事务的原子性)
事务的作用
保证了对数据操作的安全性
案例:用交行的卡操作建行ATM,给工商的账户转钱
事务具有4个属性:原子性、一致性、隔离性、持久性(通常称为ACID属性)
原子性(atomicity):
一个事务是一个工作单位,事务中包含的诸操作,要么同时做,要么同时不做
一致性(consistency):
事务必须是是数据库从一个一致性 状态变到另一个一致性状态。一致性与原子性是密切相关的
隔离性(isolation):
一个事务的执行不能被其他事务干扰。
即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,互不干扰
持久性(durability):
持久性也称永久性(permanence)指一个事务一旦提交,他对数据库的改变就是永久性的
如何使用事务
create table user( id int primary key auto_increment, name char(32), balance int ); insert into user(name,balance) values ('wsb',1000), ('egon',1000), ('ysb',1000); # 修改数据之前先开启事务操作 start transaction; # 修改操作 update user set balance=900 where name='wsb'; #买支付100元 update user set balance=1010 where name='egon'; #中介拿走10元 update user set balance=1090 where name='ysb'; # 卖家拿到90元 # 回滚到上一个状态 rollback; # 开启事务之后,只要没有执行commit操作,数据其实都没有真正刷新到硬盘 commit; """ 开启事务检测操作是否完整,不完整主动回滚到上一个状态, 如果完整就应该执行commit操作 """ # 站在python代码的角度,应该实现的伪代码逻辑, try: update user set balance=900 where name='wsb'; # 买支付100元 update user set balance=1010 where name='egon'; # 中介拿走10元 update user set balance=1090 where name='ysb'; # 卖家拿到90元 except 异常: rollback; else: commit; # 那如何检测异常? 有其他机制可以检测。。。
存储过程
什么是存储过程
类似于Python中的自定义函数
内部封装操作数据库的SQL语句,后续想要实现相应的操作,只需要调用存储过程即可
如何创建存储过程
delimiter $$ create procedure p1( in m int, # in表示这个参数必须只能是传入不能被返回出去 in n int, out res int # out表示这个参数可以被返回出去,还有一个inout表示即可以传入也可以被返回出去 ) begin select tname from teacher where tid > m and tid < n; set res=0; end $$ delimiter ;
如何使用存储过程
# 大前提:存储过程在哪个库下面创建的只能在对应的库下面才能使用!!! # 1、直接在mysql中调用 set @res=10 # res的值是用来判断存储过程是否被执行成功的依据,所以需要先定义一个变量@res存储10 call p1(2,4,10); # 报错 call p1(2,4,@res); # 查看结果 select @res; # 执行成功,@res 变量值发生了变化 # 2、在python程序中调用 pymysql链接mysql 产生的游标cursor.callproc('p1',(2,4,10)) # 内部原理:@_p1_0=2,@_p1_1=4,@_p1_2=10; cursor.execute('select @_p1_2;') # 3、存储过程与事务使用举例(了解) delimiter // create PROCEDURE p5( OUT p_return_code tinyint ) BEGIN DECLARE exit handler for sqlexception BEGIN -- ERROR set p_return_code = 1; rollback; END; DECLARE exit handler for sqlwarning BEGIN -- WARNING set p_return_code = 2; rollback; END; START TRANSACTION; update user set balance=900 where id =1; update user123 set balance=1010 where id = 2; update user set balance=1090 where id =3; COMMIT; -- SUCCESS set p_return_code = 0; # 0代表执行成功 END // delimiter ;
内置函数
注意与存储过程的区别,mysql内置的函数只能在sql语句中使用! 参考博客:http://www.cnblogs.com/linhaifeng/articles/7495918.html#_label2
内置函数使用案例
使用案例: CREATE TABLE blog ( id INT PRIMARY KEY auto_increment, NAME CHAR (32), sub_time datetime ); INSERT INTO blog (NAME, sub_time) VALUES ('第1篇','2015-03-01 11:31:21'), ('第2篇','2015-03-11 16:31:21'), ('第3篇','2016-07-01 10:21:31'), ('第4篇','2016-07-22 09:23:21'), ('第5篇','2016-07-23 10:11:11'), ('第6篇','2016-07-25 11:21:31'), ('第7篇','2017-03-01 15:33:21'), ('第8篇','2017-03-01 17:32:21'), ('第9篇','2017-03-01 18:31:21'); select date_format(sub_time,'%Y-%m'),count(id) from blog group by date_format(sub_time,'%Y-%m');
流程控制
流程控制if条件语句
# if条件语句 delimiter // CREATE PROCEDURE proc_if () BEGIN declare i int default 0; if i = 1 THEN SELECT 1; ELSEIF i = 2 THEN SELECT 2; ELSE SELECT 7; END IF; END // delimiter ;
流程控制while条件语句
# while循环 delimiter // CREATE PROCEDURE proc_while () BEGIN DECLARE num INT ; SET num = 0 ; WHILE num < 10 DO SELECT num ; SET num = num + 1 ; END WHILE ; END // delimiter ;
索引
知识回顾:数据都是存在硬盘上的,那查询数据不可避免的需要进行IO操作
索引在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构。
primary key
unique key
index key
注意foreign key不是用来加速查询用的,不在我们研究范围之内,
上面三种key前两种除了有加速查询的效果之外,还有额外的约束条件(primary key:非空且唯一,unique key:唯一),而index key没有任何约束功能只会帮你加速查询
索引就是一种数据结构,类似于书的目录。
意味着以后再查数据应该先找目录再找数据,而不是用翻页的方式查询数据
本质都是:
通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。
索引的影响:
在表中有大量数据的前提下,创建索引速度会很慢
在索引创建完毕后,对表的查询性能会大幅度提升,但是写的性能会降低
b+树
参考博文: https://images2017.cnblogs.com/blog/1036857/201709/1036857-20170912011123500-158121126.png 只有叶子结点存放真实数据,根和树枝节点存的仅仅是虚拟数据 查询次数由树的层级决定,层级越低次数越少 一个磁盘块儿的大小是一定的,那也就意味着能存的数据量是一定的。 如何保证树的层级最低呢?一个磁盘块儿存放占用空间比较小的数据项 思考我们应该给我们一张表里面的什么字段字段建立索引能够降低树的层级高度>>> 主键id字段
聚集索引(primary key)
聚集索引其实指的就是表的主键,innodb引擎规定一张表中必须要有主键。
先来回顾一下存储引擎。
myisam在建表的时候对应到硬盘有几个文件(三个)?
innodb在建表的时候对应到硬盘有几个文件(两个)?
frm文件只存放表结构,不可能放索引,
也就意味着innodb的索引跟数据都放在idb表数据文件中。
特点:叶子结点放的一条条完整的记录
辅助索引(unique,index)
辅助索引: 查询数据的时候不可能都是用id作为筛选条件, 也可能会用name,password等字段信息,那么这时候就无法利用到聚集索引的加速查询效果。
就需要给其他字段建立索引,这些索引就叫辅助索引 特点: 叶子结点存放的是 辅助索引字段对应的那条记录的主键 的值 比如:按照name字段创建索引, 那么叶子节点存放的是 {name对应的值:name所在的那条记录的主键值} select name from user where name='jason'; 上述语句叫覆盖索引: 只在辅助索引的叶子节点中就已经找到了所有我们想要的数据 select age from user where name='jason'; 上述语句叫非覆盖索引: 虽然查询的时候命中了索引字段name,但是要查的是age字段,所以还需要利用主键才去查找
测试索引
#1. 准备表 create table s1( id int, name varchar(20), gender char(6), email varchar(50) ); #2. 创建存储过程,实现批量插入记录 delimiter $$ #声明存储过程的结束符号为$$ create procedure auto_insert1() BEGIN declare i int default 1; while(i<3000000)do insert into s1 values(i,'jason','male',concat('jason',i,'@oldboy')); set i=i+1; end while; END$$ #$$结束 delimiter ; #重新声明 分号为结束符号 #3. 查看存储过程 show create procedure auto_insert1\G #4. 调用存储过程 call auto_insert1();
# 表没有任何索引的情况下 select * from s1 where id=30000; # 避免打印带来的时间损耗 select count(id) from s1 where id = 30000; select count(id) from s1 where id = 1; # 给id做一个主键 alter table s1 add primary key(id); # 速度很慢 select count(id) from s1 where id = 1; # 速度相较于未建索引之前两者差着数量级 select count(id) from s1 where name = 'jason' # 速度仍然很慢 """ 范围问题 """ # 并不是加了索引,以后查询的时候按照这个字段速度就一定快 select count(id) from s1 where id > 1; # 速度相较于id = 1慢了很多 select count(id) from s1 where id >1 and id < 3; select count(id) from s1 where id > 1 and id < 10000; select count(id) from s1 where id != 3; alter table s1 drop primary key; # 删除主键 单独再来研究name字段 select count(id) from s1 where name = 'jason'; # 又慢了 create index idx_name on s1(name); # 给s1表的name字段创建索引 select count(id) from s1 where name = 'jason' # 仍然很慢!!! """ 再来看b+树的原理,数据需要区分度比较高,而我们这张表全是jason,根本无法区分 那这个树其实就建成了“一根棍子” """ select count(id) from s1 where name = 'xxx'; # 这个会很快,我就是一根棍,第一个不匹配直接不需要再往下走了 select count(id) from s1 where name like 'xxx'; select count(id) from s1 where name like 'xxx%'; select count(id) from s1 where name like '%xxx'; # 慢 最左匹配特性 # 区分度低的字段不能建索引 drop index idx_name on s1; # 给id字段建普通的索引 create index idx_id on s1(id); select count(id) from s1 where id = 3; # 快了 select count(id) from s1 where id*12 = 3; # 慢了 索引的字段一定不要参与计算 drop index idx_id on s1; select count(id) from s1 where name='jason' and gender = 'male' and id = 3 and email = 'xxx'; # 针对上面这种连续多个and的操作,mysql会从左到右先找区分度比较高的索引字段,先将整体范围降下来再去比较其他条件 create index idx_name on s1(name); select count(id) from s1 where name='jason' and gender = 'male' and id = 3 and email = 'xxx'; # 并没有加速 drop index idx_name on s1; # 给name,gender这种区分度不高的字段加上索引并不难加快查询速度 create index idx_id on s1(id); select count(id) from s1 where name='jason' and gender = 'male' and id = 3 and email = 'xxx'; # 快了 先通过id已经讲数据快速锁定成了一条了 select count(id) from s1 where name='jason' and gender = 'male' and id > 3 and email = 'xxx'; # 慢了 基于id查出来的数据仍然很多,然后还要去比较其他字段 drop index idx_id on s1 create index idx_email on s1(email); select count(id) from s1 where name='jason' and gender = 'male' and id > 3 and email = 'xxx'; # 快 通过email字段一剑封喉
联合索引
select count(id) from s1 where name='jason' and gender = 'male' and id > 3 and email = 'xxx'; # 如果上述四个字段区分度都很高,那给谁建都能加速查询 # 给email加然而不用email字段 select count(id) from s1 where name='jason' and gender = 'male' and id > 3; # 给name加然而不用name字段 select count(id) from s1 where gender = 'male' and id > 3; # 给gender加然而不用gender字段 select count(id) from s1 where id > 3; # 带来的问题是所有的字段都建了索引然而都没有用到,还需要花费四次建立的时间 create index idx_all on s1(email,name,gender,id); # 最左匹配原则,区分度高的往左放 select count(id) from s1 where name='jason' and gender = 'male' and id > 3 and email = 'xxx'; # 速度变快
慢日志查询
设定一个时间检测所有超出改时间的生气了语句,然后针对性的进行优化