3月19日
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord} import org.apache.spark.SparkConf import org.apache.spark.streaming.dstream.{DStream, InputDStream} import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies} import org.apache.spark.streaming.{Seconds, StreamingContext} object DirectAPI { def main(args: Array[String]): Unit = { //1.创建 SparkConf val sparkConf: SparkConf = new SparkConf().setAppName("ReceiverWordCount").setMaster("local[*]") //2.创建 StreamingContext val ssc = new StreamingContext(sparkConf, Seconds(3)) //3.定义 Kafka 参数 val kafkaPara: Map[String, Object] = Map[String, Object]( ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux1:9092,linux2:9092,linux3:9092", ConsumerConfig.GROUP_ID_CONFIG -> "atguigu", "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer", "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer" ) //4.读取 Kafka 数据创建 DStream val kafkaDStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](Set("atguigu"), kafkaPara)) //5.将每条消息的 KV 取出 val valueDStream: DStream[String] = kafkaDStream.map(record => record.value()) //6. 计 算 WordCount valueDStream.flatMap(_.split(" ")) .map((_, 1)) .reduceByKey(_ + _) .print() //7. 开 启 任 务 ssc.start() ssc.awaitTermination() } }
sparkstreaming 收集kafka数据小例子,感觉这个代码不是很好写,一些参数的设置不熟悉。
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 按钮权限的设计及实现