洛谷 P4882 lty loves 96! 解题报告
P4882 lty loves 96!
题目背景
众所周知,\(lty\)非常喜欢\(96\)这两个数字(想歪的现在马上面壁去),更甚于复读(人本复)!
题目描述
由于爱屋及乌,因此,\(lty\)对于那些含有\(96\)的数也非常喜欢,而这里的含有不是一般的含有,而是具有以下性质的含有(三条都需要满足):
这个数为一个\(N\)位数,且没有前置零
这个数中至少要出现\(M\)次\(9\)和\(6\)(例:\(986996\)中出现了\(5\)次,\(9\)出现了\(3\)次,\(6\)出现了\(2\)次,共计\(5\)次)
这个数存在任意连续的从高到低三位\(A,B,C\),满足下面任意一条
\(A+B+C\)为\(9\)或\(6\)
\((A^2+B^2)\%C\)为\(9\)或\(6\),如果\(C\)为\(0\),则该条件视为不满足
输入输出格式
输入格式:
一行,两个数\(N\),\(M\)
输出格式:
一个数,表示这样的数的个数
说明
对于10%的数据,\(N<=6\)
对于40%的数据,\(N<=18\)
对于100%的数据,\(N<=50,0<=M<=N\)
人生第一道数位DP
\(dp_{i,j,k,l,q}\)从高到低前\(i\)位第\(i\)位为\(j\),第\(i-1\)位为\(k\),一共有\(l\)个\(6\)或\(9\),是否已经满足条件的方案数
注意前导0,注意要压位高精。
Code:
#include <cstdio>
#include <cstring>
int max(int x,int y){return x>y?x:y;}
struct node
{
int num[20];
node()
{
memset(num,0,sizeof(num));
num[0]=1;
}
node(int i)
{
memset(num,0,sizeof(num));
num[0]=1,num[1]=i;
}
node friend operator +(node n1,node n2)
{
int len=max(n1.num[0],n2.num[0]);
node n3;
n3.num[0]=len;
for(int i=1;i<=len;i++)
{
n3.num[i]+=n1.num[i]+n2.num[i];
n3.num[i+1]=n3.num[i]/10000;
n3.num[i]%=10000;
}
if(n3.num[len+1]) ++n3.num[0];
return n3;
}
}dp[51][10][10][51][2];
int n,m;
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<=9;i++)
for(int j=1;j<=9;j++)
{
if((i==6||i==9)&&(j==6||j==9))
dp[2][i][j][2][0]=node(1);
else if(i==6||i==9)
dp[2][i][j][1][0]=node(1);
else if(j==6||j==9)
dp[2][i][j][1][0]=node(1);
else
dp[2][i][j][0][0]=node(1);
}
for(int i=3;i<=n;i++)
for(int l3=0;l3<=9;l3++)
for(int l2=0;l2<=9;l2++)
for(int l1=0;l1<=9;l1++)
{
int s1=l1+l2+l3,s2=l1?(l3*l3+l2*l2)%l1:0;
for(int j=0;j<=i;j++)
{
if(s1==6||s1==9||s2==6||s2==9)
{
if(l1==6||l1==9)
{
if(!j) continue;
dp[i][l1][l2][j][1]=dp[i][l1][l2][j][1]
+dp[i-1][l2][l3][j-1][1]
+dp[i-1][l2][l3][j-1][0];
}
else
{
dp[i][l1][l2][j][1]=dp[i][l1][l2][j][1]
+dp[i-1][l2][l3][j][1]
+dp[i-1][l2][l3][j][0];
}
}
else
{
if(l1==6||l1==9)
{
if(!j) continue;
dp[i][l1][l2][j][0]=dp[i][l1][l2][j][0]
+dp[i-1][l2][l3][j-1][0];
dp[i][l1][l2][j][1]=dp[i][l1][l2][j][1]
+dp[i-1][l2][l3][j-1][1];
}
else
{
dp[i][l1][l2][j][0]=dp[i][l1][l2][j][0]
+dp[i-1][l2][l3][j][0];
dp[i][l1][l2][j][1]=dp[i][l1][l2][j][1]
+dp[i-1][l2][l3][j][1];
}
}
}
}
node ans=node(0);
for(int i=0;i<=9;i++)
for(int j=0;j<=9;j++)
for(int l=m;l<=n;l++)
ans=ans+dp[n][i][j][l][1];
printf("%d",ans.num[ans.num[0]]);
for(int i=ans.num[0]-1;i;i--)
{
if(ans.num[i]<1000) printf("0");
if(ans.num[i]<100) printf("0");
if(ans.num[i]<10) printf("0");
printf("%d",ans.num[i]);
}
return 0;
}
2018.9.9