洛谷 P1325 雷达安装 解题报告
P1325 雷达安装
题目描述
描述:
假设海岸线是一条无限延伸的直线。它的一侧是陆地,另一侧是海洋。每一座小岛是在海面上的一个点。雷达必须安装在陆地上(包括海岸线),并且每个雷达都有相同的扫描范围d。你的任务是建立尽量少的雷达站,使所有小岛都在扫描范围之内。
数据使用笛卡尔坐标系,定义海岸线为x轴。在x轴上方为海洋,下方为陆地。
输入输出格式
输入格式:
第一行包括2个整数n和d,n是岛屿数目,d是雷达扫描范围。
接下来n行为岛屿坐标。
输出格式:
一个整数表示最少需要的雷达数目,若不可能覆盖所有岛屿,输出“-1”。
输入输出样例
输入样例#1:
3 2
1 2
-3 1
2 1
输出样例#1:
2
样例1如图所示
说明
\(n \le 1000,d \le 20000\)
\(|x_i| \le 2 \times 10^6,0 \le y_i \le 20000\)
贪心。
因为雷达只能安排在\(x\)轴上,我们可以把问题进行转换。
每一个岛屿在\(x\)轴上都有一条线段(或者是点)可以覆盖它。
于是问题就成了,用最少的点覆盖所有的线段。
把线段按右端点排序,从左往右扫描。对于每一个右端点对应的区间,如果它没有被前一个安排过的点覆盖,那么就为它安排一个点。
解释两个东西:
- 为什么只检查前一个安排过的点,因为如果前一个安排过的点不能照看它,它也不可能被更左的端点覆盖
- 是什么保证了它是对的?这样决策,保证了满足当前需求(覆盖所有左边的区间),为后面的需求(右边需要覆盖的区间)产生了最优的状态集合,其他的状态不可能比它还优。是一种决策包容性,这种决策对未来的集合是最大的。
Code:
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstdlib>
const int N=1010;
double d;
struct node
{
double x,y,r;
bool friend operator <(node n1,node n2)
{
return n1.r<n2.r;
}
}loc[N];
int n;
void init()
{
int flag=0;
scanf("%d%lf",&n,&d);
for(int i=1;i<=n;i++)
{
scanf("%lf%lf",&loc[i].x,&loc[i].y);
if(d>=loc[i].y)
loc[i].r=sqrt(d*d-loc[i].y*loc[i].y)+loc[i].x;
else
flag=1;
}
if(flag) {printf("-1\n");exit(0);}
std::sort(loc+1,loc+1+n);
}
double get(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
void work()
{
double las=loc[1].r;
int ans=1;
for(int i=2;i<=n;i++)
{
if(get(loc[i].x,loc[i].y,las,0)>d)
ans++,las=loc[i].r;
}
printf("%d\n",ans);
}
int main()
{
init();
work();
return 0;
}
2018.7.12