「SDOI2014」向量集 解题报告

「SDOI2014」向量集

维护一个向量集合,在线支持以下操作:

  1. A x y :加入向量 \((x, y)\)
  2. Q x y l r:询问第 \(L\) 个到第 \(R\) 个加入的向量与向量 \((x, y)\) 的点积的最大值。集合初始时为空。

对于所有的数据,\(1 \leq N \leq 4 \times 10^5\),操作中的向量坐标满足 \(|x|,|y| \leq 10^8\),询问满足 \(1 \leq L \leq R \leq T\),其中 \(T\) 为已经加入的向量个数。


一眼上去,线段树套KD-树???

然后觉得4e5根本跑不动,就一直没写。

看了题解才知道自己还是对凸优化不够熟悉,明明感觉可以凸优化,但搞不清楚式子怎么化

一般的套路是,对一个值询问一个集合,找其中一个运算后得到最值之类的,我们这时候把那个集合给弄成点集,把询问搞成最大截距或者最大斜率,就可以在凸包上三分了。

这个题询问点是\((z,w)\),即询问\(ans=xz+yw\)的最大值,化简一下就成了

\[y=-\frac{z}{w}x+\frac{ans}{w} \]

最大化截距就讨论一下\(w\)的正负,决定在上or下凸包上三分就可以了。

然后我们需要支持动态插入凸包,可以直接在线段树上模拟二进制分组,每次给线段树的区间加点,当某个区间加满了点,就构建凸包(没加满是不会被询问的)

复杂度\(O(n\log^2 n)\),LOJ上懒得卡了...

有个错误调了好久,以前写凸包的时候没注意,一定要以\(y\)作为第二关键字,否则在最右边的\(x\)上可能出现问题。


Code:

#include <cstdio>
#include <cctype>
#include <vector>
#include <algorithm>
#define ll long long
const int N=4e5+10;
using std::max;
int n,m,flag;
template <class T>
void read(T &x)
{
    x=0;char c=getchar();bool f=0;
    while(!isdigit(c)) f=c=='-'?1:0,c=getchar();
    while(isdigit(c)) x=x*10+c-'0',c=getchar();
    x=f?-x:x;
}
inline int decode(int x,ll lastans){return flag?x^(lastans&0x7fffffff):x;}
struct Point
{
	ll x,y;
	Point(){}
	Point(ll X,ll Y){x=X,y=Y;}
	Point friend operator -(Point a,Point b){return Point(a.x-b.x,a.y-b.y);}
	bool friend operator <(Point a,Point b){return a.x==b.x?a.y<b.y:a.x<b.x;}
};
ll Cross(Point a,Point b){return a.x*b.y-a.y*b.x;}
std::vector<Point> pot[N<<2],s[N<<2];
int Endro[N<<2],endro;
void ins(Point x,int id)
{
	int tot=s[id].size()-1;
	while(tot>=endro&&Cross(s[id][tot]-s[id][tot-1],x-s[id][tot])<=0) --tot,s[id].pop_back();
	s[id].push_back(x);
}
void build(int id)
{
	std::sort(pot[id].begin(),pot[id].end());
	endro=1;
	for(int i=0;i<pot[id].size();i++)
        ins(pot[id][i],id);
	endro=s[id].size();
	Endro[id]=endro-1;
	for(int i=pot[id].size()-2;~i;i--) ins(pot[id][i],id);
}
#define ls id<<1
#define rs id<<1|1
void change(int id,int l,int r,int p,Point ins)
{
	pot[id].push_back(ins);
	if(s[id].empty()&&pot[id].size()==r+1-l) build(id);
	if(l==r) return;
	int mid=l+r>>1;
	if(p<=mid) change(ls,l,mid,p,ins);
	else change(rs,mid+1,r,p,ins);
}
ll cal(int x,int y,Point d)
{
	return d.x*x+d.y*y;
}
ll yuu(int id,int x,int y)
{
	int endro=s[id].size()-1;
	if(y==0) return max(s[id][0].x*x,s[id][Endro[id]].x*x);
	int l,r;
	if(y>0) l=Endro[id],r=endro;
	else l=0,r=Endro[id];
	while(l<r)
	{
		int mid=l+r>>1;
		if(cal(x,y,s[id][mid])<cal(x,y,s[id][mid+1])) l=mid+1;
		else r=mid;
	}
	return cal(x,y,s[id][l]);
}
ll query(int id,int L,int R,int l,int r,int x,int y)
{
	if(l==L&&r==R) return yuu(id,x,y);
	int Mid=L+R>>1;
	if(r<=Mid) return query(ls,L,Mid,l,r,x,y);
	else if(l>Mid) return query(rs,Mid+1,R,l,r,x,y);
	else return max(query(ls,L,Mid,l,Mid,x,y),query(rs,Mid+1,R,Mid+1,r,x,y));
}
int main()
{
	char op[10];read(n),scanf("%s",op);
	if(op[0]!='E') flag=1;
	ll las=0;
	for(int x,y,l,r,i=1;i<=n;i++)
	{
		scanf("%s",op);
		if(op[0]=='A')
		{
		    read(x),read(y);
			x=decode(x,las),y=decode(y,las);
			change(1,1,n,++m,Point(x,y));
		}
		else
		{
		    read(x),read(y),read(l),read(r);
			x=decode(x,las),y=decode(y,las);
			l=decode(l,las),r=decode(r,las);
			printf("%lld\n",las=query(1,1,n,l,r,x,y));
		}
	}
	return 0;
}
posted @ 2019-02-21 09:13  露迭月  阅读(171)  评论(0编辑  收藏  举报