LOJ 2664. 「NOI2013」向量内积 解题报告

#2664. 「NOI2013」向量内积

两个 \(d\) 维向量 \(A=[a_1, a_2 ,...,a_d]\)\(B=[b_1 ,b_2 ,...,b_d]\) 的内积为其相对应维度的权值的乘积和,即:

\[(A,B) = \displaystyle \sum_{i=1}^d{a_ib_i} = a_1b_1 + a_2b_2 + \ldots + a_db_d \]

现有 \(n\)\(d\) 维向量 \(x_1, \ldots, x_n\),小喵喵想知道是否存在两个向量的内积为 \(k\) 的倍数。请帮助她解决这个问题。


输入格式

第一行包含 \(3\) 个正整数 \(n,d,k\),分别表示向量的个数、维数以及待检测的倍数。

接下来 \(n\) 行每行有 \(d\) 个非负整数,其中第 \(i\) 行的第 \(j\) 个整数表示向量 \([x_i]\) 的第 \(j\) 维权值 \(x_{i,j}\)

输出格式

包含两个整数,用空格隔开。

如果存在两个向量 \(x_p,x_q\) 的内积为 \(k\) 的整数倍,则输出两个向量的编号 \(p\)\(q\)(要求 \(p<q\))。如果存在多组这样的向量组合,输出其中任意一组即可。

若不存在这样的向量组合,则输出两个 \(−1\)


数据范围与提示

测试点编号 n d k \(x_i\)
\(1\) \(2\) \(20\) \(2\) \(\le 10\)
\(2\) \(5\) \(20\) \(2\) \(\le 10\)
\(3\) \(10\) \(20\) \(3\) \(\le 10\)
\(4\) \(20\) \(20\) \(2\) \(\le 100\)
\(5\) \(50\) \(20\) \(3\) \(\le 100\)
\(6\) \(50\) \(50\) \(2\) \(\le 1000\)
\(7\) \(50\) \(50\) \(3\) \(\le 3000000\)
\(8\) \(80\) \(80\) \(2\) \(\le 2000000\)
\(9\) \(100\) \(100\) \(3\) \(\le 3000000\)
\(10\) \(500\) \(100\) \(3\) \(\le 3000000\)
\(11\) \(1000\) \(100\) \(2\) \(\le 2000000\)
\(12\) \(1000\) \(100\) \(3\) \(\le 3000000\)
\(13\) \(10000\) \(100\) \(2\) \(< 10\)
\(14\) \(10000\) \(100\) \(3\) \(< 10\)
\(15\) \(15000\) \(100\) \(2\) \(< 10\)
\(16\) \(18000\) \(100\) \(2\) \(< 10\)
\(17\) \(20000\) \(100\) \(2\) \(< 10\)
\(18\) \(50000\) \(30\) \(3\) \(< 10\)
\(19\) \(80000\) \(30\) \(3\) \(< 10\)
\(20\) \(100000\) \(30\) \(3\) \(< 10\)

向量点乘的过程有点像一个行向量和一个列向量相乘,然后我们把原始向量排成一个矩阵\(A\),然后令\(D=A*A^T\)

那么\(D_{i,j}\)就代表向量\(i\)和向量\(j\)做内积。

突破口在\(\bmod 2\)上。

现在矩阵所有元素在\(\bmod 2\)

我们设一个\(n\times n\)的全\(1\)矩阵\(E\),然后通过一些随机化的方法比较\(D\)\(E\)有哪里不相等。

我们可以随机几个\(1\times n\)的向量\(C\),然后判断是否有

\[C\times A\times A^T\equiv C\times E\pmod 2 \]

并且我们可以判断出哪一行不相等,然后可以暴力枚举与之匹配的另一个。

或者随机一下原始向量的排列顺序。

至于为什么随机次数是常数次,可以从Hash的角度感性理解

然后\(\bmod 3\)也差不多

注意到\(2^2\equiv 1\pmod 3,1^2\equiv 1\pmod 3\),我们把矩阵\(D'_{i,j}=D^2_{i,j}\)搞出来就可以了

把这个式子拆开可以发现我们需要把组成\(A\)的每一个向量搞出\(1\times d^2\)的,即\(A'_{i,(j-1)d+k}=A_{i,j}*A_{i,k}\)

然后和\(2\)是一样的


Code:

#include <cstdio>
#include <cstring>
#include <cctype>
#include <cstdlib>
#include <algorithm>
int read()
{
	int x=0;char c=getchar();
	while(!isdigit(c)) c=getchar();
	while(isdigit(c)) x=x*10+c-'0',c=getchar();
	return x;
}
int n,d,k;
namespace beecute
{
	int yuy[20010][110],bee[110],dew[20010],c[20010];
	void work()
	{
		for(int i=1;i<=n;i++)
			for(int j=1;j<=d;j++)
				yuy[i][j]=read()&1;
		int Dew=5;
		while(Dew--)
		{
		    memset(dew,0,sizeof dew);
		    memset(bee,0,sizeof bee);
			for(int i=1;i<=n;i++) c[i]=rand()&1;
			for(int i=1;i<=d;i++)
                for(int j=1;j<=n;j++)
                    if(c[j])
                        bee[i]=bee[i]+yuy[j][i]&1;
			for(int i=1;i<=n;i++)
				for(int j=1;j<=d;j++)
					dew[i]=(dew[i]+bee[j]*yuy[i][j])&1;
			for(int i=1;i<=n;i++)
				if(dew[i]!=c[i])
				{
					for(int j=1;j<=n;j++)
					{
						int sum=0;
						for(int k=1;k<=d;k++)
							sum=(sum+yuy[i][k]*yuy[j][k])&1;
						if(!sum)
						{
							if(i<j) printf("%d %d\n",i,j);
							else printf("%d %d\n",j,i);
							return;
						}
					}
				}
		}
		puts("-1");
	}
}
namespace beelovely
{
	int yuy[100010][101],bee[10010],dew[100010],c[100010];
	void work()
	{
		for(int i=1;i<=n;i++)
			for(int j=1;j<=d;j++)
				yuy[i][j]=read()%3;
		for(int i=1;i<=d;i++)
			for(int j=1;j<=d;j++)
				for(int k=1;k<=n;k++)
					(bee[(i-1)*d+j]+=yuy[k][i]*yuy[k][j])%=3;
		int Dew=5;
		while(Dew--)
		{
			memset(dew,0,sizeof dew);
		    memset(bee,0,sizeof bee);
			for(int i=1;i<=n;i++) c[i]=rand();
			for(int i=1;i<=d;i++)
                for(int k=1;k<=n;k++)
                    if(c[k])
                        bee[i]=(bee[i]+yuy[k][i]*yuy[k][j])%3;
			for(int i=1;i<=n;i++)
				for(int j=1;j<=d;j++)
					for(int k=1;k<=d;k++)
						dew[i]=(dew[i]+bee[(j-1)*d+k]*yuy[p[i]][j]*yuy[p[i]][k])%3;
			for(int i=1;i<=n;i++)
				if(dew[i]!=c[i])
				{
					for(int j=1;j<=n;j++)
					{
						int sum=0;
						for(int k=1;k<=d;k++)
							sum=(sum+yuy[i][k]*yuy[j][k])&1;
						if(!sum)
						{
							if(i<j) printf("%d %d\n",i,j);
							else printf("%d %d\n",j,i);
							return;
						}
					}
				}
		}
		puts("-1");
	}
}
int main()
{
	n=read(),d=read(),k=read();
	if(k==2) beecute::work();
	else beelovely::work();
	return 0;
}

2019.2.11

posted @ 2019-02-11 18:23  露迭月  阅读(294)  评论(0编辑  收藏  举报