算法概述

嘛,好久没更博客,经历了一个漫长的暑假,开学也是各种满课,现在越来越觉得大一的时候学习效率不怎么样了,小小的一个Java我也弄了那么久,现在暂定每周一篇算法方面的博客,然后穿插各种学习总结,这学期还是挺忙的,关于Javaweb,可能我要暂时食言了~~,个人越来越觉得计算机基础还有各种能力的培养才是大学的最大意义,关于Javaweb的知识还是挺简单的,这学期后期,大概五,六月,应该会开始更新,首先咱先把Java复习一遍并且记录下来吧当然能力指的是计算机方面的,要是说其他的也没错~~,总之这学期还是挺忙的,不过忙碌意味着充实,加油吧!!

 

         算法是什么?在计算机科学早期中存在着一条到比较极端的公式,“算法+数据结构=程序”,这个公式虽然比较极端一点,但是一定程度上说明了算法的重要性。

         算法应该是逻辑的一种体现,这是我自认为最正确的解释之一,我们可以把算法看做用来求解问题的工具。从广义上来说,在计算机中,所有解决了某种问题的方法都叫算法,比如TCP/IP中一个信息怎么发到一个特定的IP,这个实现的方法也可以叫做算法。从狭义上来说,算法就是任何良性定义的计算过程,通过某种函数(或方法)把特定的输入转换成特定的输出。

          说了这么多,都只是文字上的说明,可能举一些例子会更好理解。最常见的算法有:

1.排序问题

//插入,快排,归并啥的,堆排序啥的,一抓一大把。。。咱先去哭会儿

2.动态规划

3.贪心算法

……

说了这么多,你可能已经可以发现,算法本身有好有坏,作为其衡量标准的即是运算的效率,特别是对于庞大的数据,一个花费几分钟,以及一个花费几天的算法,孰优孰劣不言而喻。但是我们要怎么判断算法的优劣吗?仅仅是凭借经验吗?当然不是,判断算法的优劣可以使用时间复杂度和空间复杂度进行分析。

算法的时间复杂度和空间复杂度合称为算法的复杂度。

时间复杂度

(1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

(2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

     时间频度不同,但时间复杂度可能相同。如:T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。

    按数量级递增排列,常见的时间复杂度有:常数阶O(1),对数阶O(log2n),线性阶O(n), 线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),..., k次方阶O(nk),指数阶O(2n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

(3)最坏时间复杂度和平均时间复杂度  最坏情况下的时间复杂度称最坏时间复杂度。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,这就保证了算法的运行时间不会比任何更长。

     在最坏情况下的时间复杂度为T(n)=0(n),它表示对于任何输入实例,该算法的运行时间不可能大于0(n)。 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,算法的期望运行时间。

    指数阶0(2n),显然,时间复杂度为指数阶0(2n)的算法效率极低,当n值稍大时就无法应用。

(4)求时间复杂度

【1】如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

x=91; y=100;
while(y>0) if(x>100) {x=x-10;y--;} else x++;
解答: T(n)=O(1),
这个程序看起来有点吓人,总共循环运行了1000次,但是我们看到n没有?
没。这段程序的运行是和n无关的,
就算它再循环一万年,我们也不管他,只是一个常数阶的函数

【2】当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

x=1; 

for(i=1;i<=n;i++) 

        for(j=1;j<=i;j++)

           for(k=1;k<=j;k++)

               x++;   

该程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数:  则该程序段的时间复杂度为T(n)=O(n3/6+低次项)=O(n3)

【3】算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。

在数值A[0..n-1]中查找给定值K的算法大致如下:   

i=n-1;            

while(i>=0&&(A[i]!=k))       

      i--;        

return i;        

此算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关: ①若A中没有与K相等的元素,则语句(3)的频度f(n)=n; ②若A的最后一个元素等于K,则语句(3)的频度f(n)是常数0。

(5)时间复杂度评价性能 

有两个算法A1和A2求解同一问题,时间复杂度分别是T1(n)=100n2,T2(n)=5n3。(1)当输入量n<20时,有T1(n)>T2(n),后者花费的时间较少。(2)随着问题规模n的增大,两个算法的时间开销之比5n3/100n2=n/20亦随着增大。即当问题规模较大时,算法A1比算法A2要有效地多。它们的渐近时间复杂度O(n2)和O(n3)从宏观上评价了这两个算法在时间方面的质量。在算法分析时,往往对算法的时间复杂度和渐近时间复杂度不予区分,而经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。

空间复杂度

一个程序的空间复杂度是指运行完一个程序所需内存的大小。利用程序的空间复杂度,可以对程序的运行所需要的内存多少有个预先估计。一个程序执行时除了需要存储空间和存储本身所使用的指令、常数、变量和输入数据外,还需要一些对数据进行操作的工作单元和存储一些为现实计算所需信息的辅助空间。程序执行时所需存储空间包括以下两部分。

(1)固定部分。这部分空间的大小与输入/输出的数据的个数多少、数值无关。主要包括指令空间(即代码空间)、数据空间(常量、简单变量)等所占的空间。这部分属于静态空间。

(2)可变空间,这部分空间的主要包括动态分配的空间,以及递归栈所需的空间等。这部分的空间大小与算法有关。

一个算法所需的存储空间用f(n)表示。S(n)=O(f(n))  其中n为问题的规模,S(n)表示空间复杂度

咳咳,回归正题,我依旧坚持一个观点,算法是逻辑的一个体现,几乎任何程序,都可以根据业务逻辑设计特定的数据结构,配合算法,这就是程序!程序的效率取决于算法的优劣以及数据结构的合理性,所以算法与数据结构几乎是不可分割的!

我将会接下来的一学期将我每周所学总结于此。

posted @ 2016-03-22 23:58  bug你奏凯  阅读(479)  评论(0编辑  收藏  举报