论文笔记:Visual Object Tracking based on Adaptive Siamese and Motion Estimation Network

 Visual Object Tracking based on Adaptive Siamese and Motion Estimation  

 

本文提出一种利用上一帧目标位置坐标,在本帧中找出目标可能出现的位置的网路--motion estimation network (named MEN)  。在产生候选位置时,本文从两个可能的坐标下手,采用高斯分布产生很多候选框。然后将候选框送进Siamese Network进行相似性对比。

作者选用最近几帧的目标作为匹配对象(Buffer),提升鲁棒性。

本文的网络架构基于SINT 结构,加了可变的buffer,提前训练一个权重卷积神经网络(WCNN)。

本文跟踪框架如下图所示:

 

整个网络由两部分组成:一个用于提取前几帧目标的特征,一个用于提取当前帧的特征。

为了保留时空信息,作者将conv-3,conv-4,conv-5卷积层的池化层去掉,同时利用不同卷积层的特征进行匹配。

posted @ 2018-11-27 16:28  burton_shi  阅读(303)  评论(0编辑  收藏  举报