windows下tensorflow/objectdetection API(SSD)环境搭建(基于tensorflow1.14和python3.6)

此前就听闻室友说tensorflow在windows下坑很多,这次终于亲身领会到了。以下是参考网上大佬的教程以及自己的踩坑史总结出的有效步骤(亲测有效)

1.下载objectdetection所在的models(文件很大,考虑到国内github的速度,以下的资源均给出码云地址,进入后点击克隆/下载,选择下载方式)

  https://gitee.com/burningcarbon/tensorflow-models

2.在自己的python环境中安装依赖(给出版本号的必须下载对应版本,否则报错,其余下最新版即可)

  tensorflow==1.14.0

  numpy==1.16

  matplotlib

  lxml

  pillow

  Cython

3. 安装cocoapi(由于该项目官方并不支持windows编译,所以下载大佬的修改版)

  下载:地址https://gitee.com/burningcarbon/windows-cocoapi 

  安装:在命令行下进入cocoapi/PythonAPI目录,执行:  python setup.py build_ext install

    注意:

      以上命令适用于在全局的python环境安装

      如果想要安装在虚拟环境中,则需要执行 python虚拟环境路径/Scripts/python.exe setup.py build_ext install

      或者激活虚拟环境,在其中执行原命令即可

  将PythonAPI目录下的pycocotools复制到research目录下

4.protobuf的编译

  下载编译器

    进入https://github.com/protocolbuffers/protobuf/releases,在最新版(当前为3.11.4)中,下载Assets中的protoc-3.11.4-win64.zip,解压后将exe放入research目录下

  编译

    进入models/research目录,执行protoc  object_detection/protos/*.proto --python_out=.

    如果报错提示No such file or directory,则一个一个进行编译

        

      protoc object_detection/protos/anchor_generator.proto --python_out=.
      protoc object_detection/protos/argmax_matcher.proto --python_out=.
      protoc object_detection/protos/bipartite_matcher.proto --python_out=.
      protoc object_detection/protos/box_coder.proto --python_out=.
      protoc object_detection/protos/box_predictor.proto --python_out=.
      protoc object_detection/protos/calibration.proto --python_out=.
      protoc object_detection/protos/eval.proto --python_out=.
      protoc object_detection/protos/faster_rcnn.proto --python_out=.
      protoc object_detection/protos/faster_rcnn_box_coder.proto --python_out=.
      protoc object_detection/protos/grid_anchor_generator.proto --python_out=.
      protoc object_detection/protos/hyperparams.proto --python_out=.
      protoc object_detection/protos/image_resizer.proto --python_out=.
      protoc object_detection/protos/input_reader.proto --python_out=.
      protoc object_detection/protos/keypoint_box_coder.proto --python_out=.
      protoc object_detection/protos/losses.proto --python_out=.
      protoc object_detection/protos/matcher.proto --python_out=.
      protoc object_detection/protos/mean_stddev_box_coder.proto --python_out=.
      protoc object_detection/protos/model.proto --python_out=.
      protoc object_detection/protos/multiscale_anchor_generator.proto --python_out=.
      protoc object_detection/protos/optimizer.proto --python_out=.
      protoc object_detection/protos/pipeline.proto --python_out=.
      protoc object_detection/protos/post_processing.proto --python_out=.
      protoc object_detection/protos/preprocessor.proto --python_out=.
      protoc object_detection/protos/region_similarity_calculator.proto --python_out=.
      protoc object_detection/protos/square_box_coder.proto --python_out=.
      protoc object_detection/protos/ssd.proto --python_out=.
      protoc object_detection/protos/ssd_anchor_generator.proto --python_out=.
      protoc object_detection/protos/string_int_label_map.proto --python_out=.
      protoc object_detection/protos/train.proto --python_out=.

 

  安装:

      命令行进入models/research目录,执行python setup.py install(python虚拟环境的安装同第二步cocoapi的安装)

5.配置环境变量

  此电脑》属性》高级系统设置》环境变量,找到path,添加 models存放路径/models/research/object_detection

7.安装slim

    删除 models/research/slim目录下的BUILD文件,然后命令行下cd 到 models/research/slim目录下,运行: python setup.py install(python虚拟环境的安装同上)

8.测试

  命令行进入models/research路径,运行测试命令python object_detection/builders/model_builder_test.py(python虚拟环境的测试同上)

  最后出现以下输出则证明环境安装成功

  

 

posted @ 2020-03-06 22:14  燃烧的砟子  阅读(451)  评论(0编辑  收藏  举报