Prime Distance
筛法||暴力
这道题是可以用筛法,先筛出2-sqrt(N)内的质数,然后让这些质数去筛掉L-R内的合数,就行;
但我们显然不能向正解屈♂服
我们用判断大质数的利器:M-R算法,高效的判断一个数是否是质数,复杂度(R-L+1)*log(R-L+1);
code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<ctime>
using namespace std;
#define int long long
#define I_love signed
#define zmd main()
int l,r;
inline int abs_(int x,int y)
{
return x>y?x-y:y-x;
}
inline int fast_pow(int a,int b,int p)
{
int ans=1;
while (b)
{
if (b&1) ans=ans*a%p;
a=a*a%p;
b>>=1;
}
return ans;
}
inline bool mr(int k)
{
if (k==1) return 0;
if (k==2) return 1;
for (int i=1;i<=40;++i)
{
int tmp=rand();
tmp=tmp*100000%(k-2)+2;
if (fast_pow(tmp,k-1,k)!=1) return 0;
}
return 1;
}
I_love zmd
{
srand(time(NULL));
while (scanf("%lld%lld",&l,&r)!=EOF)
{
int last =0;
int minn=1e17,mx=-1e17,num1a=-1,num1b=-1,num2a=-1,num2b=-1;
for (int i=l;i<=r;++i)
{
if (mr(i))
{
if (!last) last=i;
else
{
if (minn>abs_(i,last))
{
minn=abs_(i,last);
num1a=last,num1b=i;
}
if (mx<abs_(i,last))
{
mx=abs_(i,last);
num2a=last,num2b=i;
}
last=i;
}
}
}
if (num1a==-1) printf("There are no adjacent primes.\n");
else printf("%lld,%lld are closest, %lld,%lld are most distant.\n",num1a,num1b,num2a,num2b);
}
}
收获:
关于质数的问题可以用M-R算法考虑一下,简化思维,代码量!!