HashMap源码解析

1、存储结构

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
}

 

2、属性

   //默认容量,1向左移位4个,00000001变成00010000,也就是2的4次方为16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    //最大容量,2的30次方。
    static final int MAXIMUM_CAPACITY = 1 << 30;
    //加载因子,默认0.75,扩容会用到。
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //当某个桶节点数量大于8时,会转换为红黑树。
    static final int TREEIFY_THRESHOLD = 8;
    //当某个桶节点数量小于6时,会转换为链表,前提是它当前是红黑树结构。
    static final int UNTREEIFY_THRESHOLD = 6;
    //当整个hashMap中元素数量大于64时,也会进行转为红黑树结构。
    static final int MIN_TREEIFY_CAPACITY = 64;
    //存储元素的数组,transient关键字表示该属性不能被序列化
    transient Node<K,V>[] table;
    //将数据转换成set的另一种存储形式,这个变量主要用于迭代功能。
    transient Set<Map.Entry<K,V>> entrySet;
    //数组中存储K,V对的数量
    transient int size;//临界值,也就是元素数量达到临界值时,会进行扩容。
    int threshold;
    //也是加载因子,只不过这个是变量。
    final float loadFactor; 

 

3、构造方法

    //无参构造方法
    public HashMap() {
     //初始化加载因子为默认值(0.75)
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

 

    //该方法会返回大于cap值的,且离其最近的2次幂,例如t为29,则返回的值是32
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

 

4、添加(修改)

    //获取key的hashCode
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

 

  public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
     //tab 哈希数组,p 其中某一个哈希桶的首结点,n 表示哈希数组的长度, i 计算出来的数组下标
        Node<K,V>[] tab; Node<K,V> p; int n, i;
     //引用哈希数组,获取其长度,如果table一开始没有进行加载的话(需要第一次put操作才能进行加载),或者哈希数组的长度为0,则进行扩容
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
     //如果计算出来的哈希桶的首结点没有值的话,则直接插入新结点key-value放到此处
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
       //下面是发生hash冲突的几种情况  
       //e 表示临时结点的作用,k 表示存放当前结点的key值
            Node<K,V> e; K k;
       //第一种,首节点的情况(p当前表示首结点,还没有移动过),如果key和value都相等,说明找到了
       //value的两种比较,第一个表示值得对比,第二个表示对象的对比(前提是不能为null)
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
       //第二种,判断是否属于红黑树的结点
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
       //第三种,链表中的结点
            else {
          //遍历该链表,进行查询
                for (int binCount = 0; ; ++binCount) {
            //如果遍历到了链表尾部,说明链表中并没有重复的key-value,则直接在尾部添加新结点
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
               //判断该链表的个数是否大于8,如果是,则转换为红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
            //此处说明链表有重复的key值
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
        //结合上面所说,有重复的key值,则进行覆盖操作
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
     //元素个数加一,如果判断结果大于临界值,则进行扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

 扩容:

    final Node<K,V>[] resize() {
     //指向没扩容之前的哈希数组
        Node<K,V>[] oldTab = table;
     //获取没扩容之前哈希数组的长度
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
     //获取没扩容之前哈希数组的临界值
        int oldThr = threshold;
     //初始化新哈希数组的长度和临界值
        int newCap, newThr = 0;
     //如果oldCap>0的话,说明不是首次进行初始化
        if (oldCap > 0) {
       //如果oldCap大于哈希数组定义的最大容量,则将其修改成int型的最大容量
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
       //标记##,扩容两倍,并且扩容之后的长度要小于默认容量最大值,oldCap要大于默认容量最小值
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
     //如果前面没进行,到了此处,说明了一点,因为oldCap<=0,且oldThr>0,所以该哈希数组已经初始化过了,只是其中没有元素而已
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
     //最后呢,此处就表示首次初始化了
        else {               // zero initial threshold signifies using defaults
       //初始化默认容量大小16
            newCap = DEFAULT_INITIAL_CAPACITY;
       //初始化临界值,  临界值 = 容量 * 加载因子
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
     //此处对上面标记##的补充,就是当oldCap>0时,oldCap扩大两倍不在默认的容量范围内(16 < x < 230)
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
     //把以前的哈希数组放到新的哈希数组中
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

 

 

5、删除

    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
     //tab 哈希数组,p 数组下标的结点,n 数组的长度,index 当前数组的下标
        Node<K,V>[] tab; Node<K,V> p; int n, index;
     //哈希数组不为null,长度大于0,且该链表不为null
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
        //node 存储要删除的结点,e 临时变量,k 当前结点的key值,v 当前结点的value值
            Node<K,V> node = null, e; K k; V v;
       //首结点正好是需要找的结点
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
          //如果是红黑树中的结点,则去红黑树中找
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
            //遍历该链表,寻找其结点
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
       //找到要删除的结点后,判断!matchValue,我们正常remove删除,!matchValue都是true
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
          //如果是红黑树中的结点,则去红黑树中删除
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
          //此处表示要删除的结点时头结点
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
          //长度减一
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
     //如果返回的时null,表示没有该结点,删除失败
        return null;
    }

 

 

6、查找

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    final Node<K,V> getNode(int hash, Object key) {
     //tab 哈希数组,first 表示某一个数组下标的头结点,n 数组的长度,k 表示当前结点的key值
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
     //哈希数组不为null,长度大于0,并且该链表不为null
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
        //如果是头结点,则直接返回
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
       //不是头结点
            if ((e = first.next) != null) {
          //判断是否为红黑树中的结点
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
          //遍历链表查询
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
     //返回null,表示不存在该结点
        return null;
    }

 

posted @ 2020-03-18 20:27  不会fly的pig  阅读(156)  评论(0编辑  收藏  举报