HDU 1711:Number Sequence(KMP)
Number Sequence
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1
算法:KMP匹配
#include <iostream> #include <cstdio> using namespace std; const int maxn = 1e6+7; int a[maxn]; int b[maxn]; int Next[maxn]; void getNext(int len) { int i = 0, j = -1; Next[0] = -1; while(i < len) { while(j != -1 && b[i] != b[j]) { j = Next[j]; } Next[++i] = ++j; } } int main() { int T; scanf("%d", &T); while(T--) { int n, m; scanf("%d %d", &n, &m); for(int i = 0; i < n; i++) { scanf("%d", &a[i]); } for(int j = 0; j < m; j++) { scanf("%d", &b[j]); } getNext(m); int i = 0, j = 0; int ans = -1; while(i < n) { while(j != -1 && a[i] != b[j]) { j = Next[j]; } i++, j++; if(j >= m) { ans = i - j + 1; break; } } printf("%d\n" ,ans); } return 0; }