参考地址:
贪心学院:https://github.com/GreedyAIAcademy/Machine-Learning
1矩阵分解概述
1.1用在什么地方
推荐系统:最著名的就那个烂大街的啤酒和尿布的故事,还有现在头条的投喂用户使用的也是推荐系统。就不多说了。
1.2推荐的原理
设,矩阵R代表3个用户对4部影片的评分,矩阵U和P是通过算法分解出来的矩阵,R是预测出来的矩阵。
此时我们可以看出, 矩阵R中的值很接近原始矩阵R中的值,这样填补之后的值就是我们要的数字。
2矩阵分解的原理
2.1目标函数
如1.2所示,我们希望的结果就是R*中的结果与R中的结果差值最小。
因此我们可以得到目标函数:
\[arg \min_{U,P} \sum_{(i,j) \in Z}(R_{ij}-U_{i}P_{j}^{T})^2 \\
\\
Z = \{(i,j):r_{ij} 已知\}
\]
\(U_i P_j\)为行向量,分别来自于矩阵U和矩阵P的第i行和第j行;分别代表了第i个用户的画像向量,和第j个物品的画像向量。
2.2 损失函数
为了方便求导,我们乘个1/2,结果如下:
\[arg \min_{U,P} \sum_{(i,j) \in Z}\frac{1}{2}(R_{ij}-U_{i}\cdot P_{j})^2 \\
\\
Z = \{(i,j):r_{ij} 已知\}
\]
继续计算结果如下:
\[L_{ij} = \frac{1}{2}(R_{ij}-U_{i}\cdot P_{j})^2 \\
\]
得到损失梯度如下:
\[\frac{\partial L_{ij}}{\partial U_{i}}= \frac{\partial }{\partial U_{i}} [\frac{1}{2}(R_{ij}-U_{i}\cdot P_{j})^2] = -P_j(R_{ij}-U_{i}\cdot P_{j}) \\
\\
\frac{\partial L_{ij}}{\partial P_{j}}= \frac{\partial }{\partial P_{j}} [\frac{1}{2}(R_{ij}-U_{i}\cdot P_{j})^2] = -U_i(R_{ij}-U_{i}\cdot P_{j})
\]
为了防止过拟合和训练过程中的误差,加入正则项
\[arg \min_{U,P} \sum_{(i,j) \in Z}\frac{1}{2}(R_{ij}-U_{i}\cdot P_{j})^2 + \lambda [ \sum_{i=1}^{m}\left \| U_i \right \|^2 + \sum_{i=1}^{n}\left \| P_j \right \|^2]
\]
再求偏导可得:
\[\frac{\partial L_{ij}}{\partial U_{i}}=-P_{j}(R_{ij}-U_{i}\cdot P_{j}) + \lambda U_{i} \\
\\
\frac{\partial L_{ij}}{\partial P_{j}}=-U_{i}(R_{ij}-U_{i}\cdot P_{j}) + \lambda P_{j} \\
\]
2.3 通过梯度下降的方法求得结果
设定k的值,设定学习步长\(\gamma\)(learning rate),初始化U和P,重复以下步骤直到均方差满意为止:
遍历Z中的(i,j),Z={(i,j):\(r_{ij}\)已知}
\[U_{i}\leftarrow U_{i} - \gamma \frac{\partial L_{ij}}{\partial U_{i}} \\
P_{j}\leftarrow P_{j} - \gamma \frac{\partial L_{ij}}{\partial P_{j}} \\
\]
3 代码实现
看了上面的公式肯定是一知半解的,但看了矩阵分解函数,就会对梯度下降问题的解决方法豁然开朗
代码:
# 导入 nunpy 和 surprise 辅助库
import numpy as np
import surprise
# 计算模型
class MatrixFactorization(surprise.AlgoBase):
'''基于矩阵分解的推荐.'''
def __init__(self, learning_rate, n_epochs, n_factors, lmd):
self.lr = learning_rate # 梯度下降法的学习率
self.n_epochs = n_epochs # 梯度下降法的迭代次数
self.n_factors = n_factors # 分解的矩阵的秩(rank)
self.lmd = lmd # 防止过拟合的正则化的强度
def fit(self, trainset):
'''通过梯度下降法训练, 得到所有 u_i 和 p_j 的值'''
print('Fitting data with SGD...')
# 随机初始化 user 和 item 矩阵.
u = np.random.normal(0, .1, (trainset.n_users, self.n_factors))
p = np.random.normal(0, .1, (trainset.n_items, self.n_factors))
# 梯度下降法
for _ in range(self.n_epochs):
for i, j, r_ij in trainset.all_ratings():
err = r_ij - np.dot(u[i], p[j])
# 利用梯度调整 u_i 和 p_j
u[i] -= -self.lr * err * p[j] + self.lr * self.lmd * u[i]
p[j] -= -self.lr * err * u[i] + self.lr * self.lmd * p[j]
# 注意: 修正 p_j 时, 按照严格定义, 我们应该使用 u_i 修正之前的值, 但是实际上差别微乎其微
self.u, self.p = u, p
self.trainset = trainset
def estimate(self, i, j):
'''预测 user i 对 item j 的评分.'''
# 如果用户 i 和物品 j 是已知的值, 返回 u_i 和 p_j 的点积
# 否则使用全局平均评分rating值(cold start 冷启动问题)
if self.trainset.knows_user(i) and self.trainset.knows_item(j):
return np.dot(self.u[i], self.p[j])
else:
return self.trainset.global_mean
# 应用
from surprise import BaselineOnly
from surprise import Dataset
from surprise import Reader
from surprise import accuracy
from surprise.model_selection import cross_validate
from surprise.model_selection import train_test_split
import os
# 数据文件
file_path = os.path.expanduser('./ml-100k/u.data')
# 数据文件的格式如下:
# 'user item rating timestamp', 使用制表符 '\t' 分割, rating值在1-5之间.
reader = Reader(line_format='user item rating timestamp', sep='\t', rating_scale=(1, 5))
data = Dataset.load_from_file(file_path, reader=reader)
# 将数据随机分为训练和测试数据集
trainset, testset = train_test_split(data, test_size=.25)
# 初始化以上定义的矩阵分解类.
algo = MatrixFactorization(learning_rate=.005, n_epochs=60, n_factors=2, lmd = 0.2)
# 训练
algo.fit(trainset)
# 预测
predictions = algo.test(testset)
# 计算平均绝对误差
accuracy.mae(predictions)
#结果:0.7871327139440717
# 使用 surpise 内建的基于最近邻的方法做比较
algo = surprise.KNNBasic()
algo.fit(trainset)
predictions = algo.test(testset)
accuracy.mae(predictions)
#结果:0.7827160139309475
# 使用 surpise 内建的基于 SVD 的方法做比较
algo = surprise.SVD()
algo.fit(trainset)
predictions = algo.test(testset)
accuracy.mae(predictions)
#结果:0.7450633876817936
转载请注明来源:https://www.cnblogs.com/bugutian/