机器学习入门教程-k-近邻
k-近邻算法原理
像之前提到的那样,机器学习的一个要点就是分类,对于分类来说有许多不同的算法,所谓的物以聚类,分以群分。我们非常的清楚,一个地域的人群,不管在生活习惯,还是在习俗上都是非常相似的,也就是我们说的一类人。每一类人都会形成自己的一个中心,越靠近这个中心的人越为相似。k近邻算法就是为了找到这个中心点,把这中心点当成这类关键点,在有新的数据需要分类的话,就看离哪个中心点近,那么就属于哪一类。
假设我们有这样的一组数据,他代表一个人的地理坐标位置:
x坐标 | y坐标 | 哪省人 |
---|---|---|
4.035615117 | 4.920529835 | 0 |
4.665299994 | 4.702897321 | 0 |
1.711128297 | 1.031989236 | 1 |
根据这坐标在图上绘出图形:
两个蓝色
的点互相靠近,它们的属性应该是相似的,而红色
的点,离这两个蓝色
的点有一定的距离,可能属于另一个聚合。
在这里导入一组数据,这一组数据中有三个分类,每一个分类就是一个群,组成了三个中心,具体的数据和图如下:
import numpy as np
import random
import matplotlib.pyplot as plt
def read_clusters(clustersfile):
cl = []
tl = []
with open(clustersfile, 'r') as f:
for line in f:
line = line.strip()
if line != '':
line = line.split()
constraint = [float(line[0]), float(line[1])]
cl.append(constraint)
tl.append(int(line[2]))
return cl,tl
train_data,train_labels = read_clusters('clusters3.txt')
train_data = np.array(train_data)
key_name = {0:'red',1:'blue',2:'orange'}
for i in range(train_data.shape[0]):
plt.scatter(train_data[i:i + 1, 0:1], train_data[i:i + 1, 1:2], c=key_name[train_labels[i]], marker='o',s=20)
plt.savefig('clusters.png')
k-近邻算法步骤
k-近邻的一般步骤如下:
1.先随机的产生几个中心,中心点的确认来自于需要组建几个类群。
def _init_random_centroids(self, data):
n_samples, n_features = np.shape(data)
centroids = np.zeros((self.k, n_features))
for i in range(self.k):
centroid = data[np.random.choice(range(n_samples))]
centroids[i] = centroid
return centroids
2.接下来是把所有的数据点跟这几个中心点进行比较,数据点里哪个中心点近,那么这个点就属于哪个类群。
计算距离的公式如下:
def euclidean_distance(vec_1, vec_2):
if(len(vec_1) != len(vec_2)):
raise Exception("The two vectors do NOT have equal length")
distance = 0
for i in range(len(vec_1)):
distance += pow((vec_1[i] - vec_2[i]), 2)
return np.sqrt(distance)
根据距离查找属于哪个中心点。
def _closest_centroid(self, sample, centroids):
closest_i = None
closest_distance = float("inf")
for i, centroid in enumerate(centroids):
distance = ml_helpers.euclidean_distance(sample, centroid)
if distance < closest_distance:
closest_i = i
closest_distance = distance
return closest_i
3.通过中心点确定了类群,在通过类群更新中心点。中心点是这个类群所有点的均值点,计算均值更新中心点。
def _calculate_centroids(self, clusters, data):
n_features = np.shape(data)[1]
centroids = np.zeros((self.k, n_features))
for i, cluster in enumerate(clusters):
centroid = np.mean(data[cluster], axis=0)
centroids[i] = centroid
return centroids
4.不断的更新这一个过程,直到中心点不在变化。
整个过程如下:
import numpy as np
import random
import sys
import matplotlib.pyplot as plt
def euclidean_distance(vec_1, vec_2):
if(len(vec_1) != len(vec_2)):
raise Exception("The two vectors do NOT have equal length")
distance = 0
for i in range(len(vec_1)):
distance += pow((vec_1[i] - vec_2[i]), 2)
return np.sqrt(distance)
def read_clusters(clustersfile):
cl = []
tl = []
with open(clustersfile, 'r') as f:
for line in f:
line = line.strip()
if line != '':
line = line.split()
constraint = [float(line[0]), float(line[1])]
cl.append(constraint)
tl.append(int(line[2]))
return cl,tl
class KMeans():
def __init__(self, k=2, max_iterations=500):
self.k = k
self.max_iterations = max_iterations
self.kmeans_centroids = []
def _init_random_centroids(self, data):
n_samples, n_features = np.shape(data)
centroids = np.zeros((self.k, n_features))
for i in range(self.k):
centroid = data[np.random.choice(range(n_samples))]
centroids[i] = centroid
return centroids
def _closest_centroid(self, sample, centroids):
closest_i = None
closest_distance = float("inf")
for i, centroid in enumerate(centroids):
distance = euclidean_distance(sample, centroid)
if distance < closest_distance:
closest_i = i
closest_distance = distance
return closest_i
def _create_clusters(self, centroids, data):
n_samples = np.shape(data)[0]
clusters = [[] for _ in range(self.k)]
for sample_i, sample in enumerate(data):
centroid_i = self._closest_centroid(sample, centroids)
clusters[centroid_i].append(sample_i)
return clusters
def _calculate_centroids(self, clusters, data):
n_features = np.shape(data)[1]
centroids = np.zeros((self.k, n_features))
for i, cluster in enumerate(clusters):
centroid = np.mean(data[cluster], axis=0)
centroids[i] = centroid
return centroids
def _get_cluster_labels(self, clusters, data):
y_pred = np.zeros(np.shape(data)[0])
for cluster_i, cluster in enumerate(clusters):
for sample_i in cluster:
y_pred[sample_i] = cluster_i
return y_pred
def fit(self, data):
centroids = self._init_random_centroids(data)
for iteration in range(self.max_iterations):
clusters = self._create_clusters(centroids, data)
prev_centroids = centroids
centroids = self._calculate_centroids(clusters, data)
diff = centroids - prev_centroids
if not diff.any():
break
self.kmeans_centroids = centroids
return centroids
def predict(self, data):
if not self.kmeans_centroids.any():
raise Exception("K-Means centroids have not yet been determined.\nRun the K-Means 'fit' function first.")
clusters = self._create_clusters(self.kmeans_centroids, data)
predicted_labels = self._get_cluster_labels(clusters, data)
return predicted_labels
key_name = {0:'red',1:'blue',2:'orange'}
clf = KMeans(k=3, max_iterations=3000)
train_data,train_labels = read_clusters('clusters3.txt')
train_data = np.array(train_data)
centroids = clf.fit(train_data)
print centroids
中心点不断更新的过程如下:
算法误差估计
检验算法的好坏,简单的办法是把一部分的数据用来训练,一部分的数据用来检验,查看算法的结果跟预计的数据相差多少?
下面是算法的效果估计:
Accuracy = 0
for index in range(len(train_labels)):
# Cluster the data using K-Means
current_label = train_labels[index]
predicted_label = predicted_labels[index]
if current_label == int(predicted_label):
Accuracy += 1
Accuracy /= len(train_labels)
print Accuracy
输出的结果为
1
准确率达到100%。
sklearn 下的k-近邻算法
在学习算法的时候知道了原理,通过自己的代码对算法的原理进行编写,通常来讲这很方便学习,在知道了如何编写算法以后,可以直接使用现成的开源库,直接使用该算法,sklearn
就非常方便使用。
clf = cluster.KMeans(n_clusters=3, max_iter=3000, n_init=10)
kmeans = clf.fit(train_data)
Accuracy = 0
for index in range(len(train_labels)):
# Cluster the data using K-Means
current_sample = train_data[index].reshape(1,-1)
current_label = train_labels[index]
predicted_label = kmeans.predict(current_sample)
if current_label == predicted_label:
Accuracy += 1
Accuracy /= len(train_labels)
算法的应用
k-近邻算法用来找到中心点,同时算法也可以用来进行去重,把重复的附近的点都把他近似为中心点。
转载请标明来之:http://www.bugingcode.com/
更多教程:阿猫学编程