蒙特卡洛方法

一、简介

蒙特卡罗方法是一种计算方法。原理是通过大量随机样本,去了解一个系统,进而得到所要计算的值。

它非常强大和灵活,又相当简单易懂,很容易实现。对于许多问题来说,它往往是最简单的计算方法,有时甚至是唯一可行的方法。

它诞生于上个世纪40年代美国的"曼哈顿计划",名字来源于赌城蒙特卡罗,象征概率。

二、π的计算

第一个例子是,如何用蒙特卡罗方法计算圆周率π。

正方形内部有一个相切的圆,它们的面积之比是π/4。

现在,在这个正方形内部,随机产生10000个点(即10000个坐标对 (x, y)),计算它们与中心点的距离,从而判断是否落在圆的内部。

如果这些点均匀分布,那么圆内的点应该占到所有点的 π/4,因此将这个比值乘以4,就是π的值。

代码如下:

 

// Author: Waihui Zheng
// method: 使用蒙特卡罗方法

#include <stdlib.h>
#include <math.h>
#include <iostream>

const int POINTS = 10000000;

bool is_in_circle(double x0, double y0, double x, double y, double r) {
    double length = pow((x - x0), 2) + pow((y - y0), 2);
    return length <= pow(r, 2);
}

int main(int argc, char* argv[]) {
    srand(time(NULL));
    const double R = 1;
    int cnt = 0;
    for (int i = 0; i < POINTS; ++i) {
        double x = 1.0 * random() / RAND_MAX;
        double y = 1.0 * random() / RAND_MAX;
        if (is_in_circle(0, 0, x, y, R)) {
            ++cnt;
        }
    }

    std::cout << "π=" << 4.0 * cnt / POINTS << std::endl;
    return 0;
}

 

posted on 2016-03-22 21:25  bug睡的略爽  阅读(483)  评论(0编辑  收藏  举报

导航